《舰船科学技术》

文章标题:深度学习算法下舰船导航设备状态检验方法设计

文章作者:李永俊1, 孙静宇2, 谢红薇2
关 键 字:深度学习算法;舰船导航设备;状态检验;误差模型
文章摘要:为自动提取数据中的复杂特征,提升状态检验的鲁棒性,设计深度学习算法下舰船导航设备状态检验方法。通过建立包含陀螺仪漂移误差、加速度计随机误差及GPS接收机定位误差的多源误差模型,系统量化姿态角、速度及位置等关键状态指标;在深度信念网络内,输入关键指标数据,自动提取数据中反映舰船导航设备状态的复杂特征;以极限学习机为深度信念网络的回归层,结合提取的复杂特征,输出导航设备状态检验结果。实验证明,该方法可有效自动提取检查导航设备状态的复杂特征,完成设备状态检验;在不同负载情况下,导航设备状态检验的决定系数达0.93以上,即状态检验的鲁棒性较优。