《舰船科学技术》

文章标题:基于神经网络和粒子群算法的船舶板架动力学优化

文章作者:周俞1,2, 栾晨3, 夏利娟1,2关 键 字:船舶板架结构;BP神经网络代理模型;粒子群算法;结构动力学优化
文章摘要:本文提出一种基于神经网络和粒子群算法(Particle Swarm Optimization,PSO)的船舶板架动力学优化方法,用于板架布局的快速寻优。首先,分析船舶板架布局的特征参数,利用拉丁超立方采样和模态分析获得样本点的固有频率;然后,构建BP神经网络代理模型,用以反映板架特征参数和固有频率之间的非线性映射关系;最后,结合粒子群算法,以结构重量和一阶固有频率为目标,将代理模型应用于船舶板架结构的动力学优化,以确定较优的布局型式。结果表明,BP神经网络代理模型对板架固有频率的预测具有较高的精度,BP-PSO方法对不同尺寸和类型的板架均适用,具有广泛性、高效性、普适性的优势。因此,BP-PSO法能为板架优化设计提供较好的思路和方案。