为了准确快速获取含缺陷结构材料裂纹前缘的SIF,本文基于扩展有限元法,分别从收敛性、计算精度以及网格尺寸对计算结果的影响角度出发,通过标准CT试样获取三维裂纹前缘SIF,并与传统的围道积分法和公式解析解的计算结果对比分析,得出基于扩展有限元法所获取的三维裂纹前缘SIF变化规律。结果表明:随着网格尺寸的增加,扩展有限元法可以保证足够的收敛性与稳定性;沿厚度方向SIF大小呈逐渐递增再递减对称分布,表明含缺陷结构中的裂纹总是从内部中间开裂;扩展有限元法对网格的依赖程度低,在网格数量与类型选取适当的前提下,使用扩展有限元法得到的SIF计算值与理论值吻合度较高。
To obtain the SIF of the crack tip of the defective structural material accurately and quickly. This paper is based on the extended finite element method (XFEM), starting from the perspective of convergence, calculation accuracy, and the influence of mesh size on the calculation results. The three-dimensional crack front SIF was obtained by standard CT specimens, and compared with the calculation results of the traditional contour integral method and the analytical solution of the formula, the change law of the three-dimensional crack front SIF obtained based on the XFEM method was obtained. The results show as the mesh size increases, the XFEM method can ensure sufficient convergence and stability. The stress intensity factor along the thickness direction is gradually increasing and then decreasing symmetrically, indicating that the cracks in the defect-containing structure always crack from the inside. The XFEM method has a low degree of dependence on the grid. Under the premise that the number and type of grids are selected appropriately, the calculated value of the stress intensity factor obtained by the XFEM method is in good agreement with the theoretical value.
2022,44(3): 1-5 收稿日期:2021-04-29
DOI:10.3404/j.issn.1672-7649.2022.03.001
分类号:O346.1
基金项目:国家自然科学基金资助项目(52075434);陕西省国际科技合作计划项目(2021KW-36)
作者简介:薛河(1961-),男,教授,研究方向为机械设计及理论、结构完整性评价
参考文献:
[1] 张鼎, 黄小平. 复杂载荷作用下潜艇结构疲劳裂纹扩展预报方法[J]. 舰船科学技术, 2012, 34(2): 11–16+21
ZHANG Ding, HUANG Xiao-ping. Procedure to predict fatigue crack growth of submarine structures under complex loading conditions[J]. Ship Science and Technology, 2012, 34(2): 11–16+21
[2] KUMAR M, SINGH I V, MISHRA B K, et al. Mixed mode crack growth in elastoplastic-creeping solids using XFEM[J]. Engineering Fracture Mechanics, 2018, 199: 489–517
[3] 王强胜, 李孝滔, 昝晓东, 等. 分布位错法研究钢轨表面边缘直裂纹的力学行为[J]. 表面技术, 2020, 49(2): 200–211
WANG Qiang-sheng, LI Xiao-tao, JIU Xiao-dong, et al. Mechanical behavior of straight crack on the edge of rail surface by distributed dislocation method[J]. Surface Technology, 2020, 49(2): 200–211
[4] CHEN Y Z. Stress intensity factors in a finite cracked cylinder made of functionally graded materials[J]. International Journal of Pressure Vessels and Piping, 2004, 81(12): 941–947
[5] ESHRAGHI I, SOLTANI N. Stress intensity factor calculation for internal circumferential cracks in functionally graded cylinders using the weight function approach[J]. Engineering Fracture Mechanics, 2015, 134: 1–19
[6] LI J, LIU J Z, KORAKIANITIS T, et al. Finite block method in fracture analysis with functionally graded materials[J]. Engineering Analysis with Boundary Elements, 2017, 82: 57–67
[7] WANG Y X, WAISMAN H, HARARI I. Direct evaluation of stress intensity factors for curved cracks using Irwin's integral and XFEM with high‐order enrichment functions[J]. International Journal for Numerical Methods in Engineering, 2017, 112(7): 629–654
[8] BELYTSCHKO T, BLACK T. Elastic crack growth in finite elements with minimal remeshing[J]. International Journal for Numerical Methods in Engineering, 1999, 45(5): 601–620
[9] BERGARA A, DORADOJI, MARTIN-MEIZORO A, et al. Fatigue crack propagation in complex stress fields: Experiments and numerical simulations using the extended finite element method (XFEM)[J]. International Journal of Fatigue, 2017, 103: 112–121
[10] 王通, 焦学健, 李丽君, 等. 交叉型裂纹扩展的近场动力学分析[J]. 中国科技论文, 2020, 15(3): 354–359
WANG Tong, JIAO Xue-jian, LI Li-jun, et al. Peridynamics analysis of intersecting cracks propagation[J]. China Sciencepaper, 2020, 15(3): 354–359