本文采用二维离散元法模拟碎冰与船舶的相互作用。运用海冰粘弹性的Kelvin模型,结合船舶与碎冰的耦合运动,通过Newmark法求解三自由度船舶运动方程,计算船舶航行于碎冰区的碎冰载荷。与相关文献进行对比,验证本文数值模型的可行性。研究海冰不同的弹簧系数、粘性阻尼系数与摩擦系数对碎冰载荷的影响。结果表明:二维离散元数值模拟满足计算要求;相比于粘性阻尼系数,弹簧系数与摩擦系数对碎冰载荷影响更显著。本文的研究可为极地船舶碎冰阻力设计和船模实验提供理论帮助。
A two-dimensional discrete element method is adopted to simulate the interaction between broken ice and polar ship in this paper. The ice load coupled with motions of the ship is calculated based on the Kelvin model of the ice viscoelasticity. The Newmark-β integral method is applied in the simulation to update the motion equation of the three-degree-of-freedom rigid body at each time step when calculating the broken ice load of the ship sailing in the broken ice field. The feasibility of this numerical model is validated against the published results. Then, the effects of different spring coefficients, viscous damping coefficients and friction coefficients of the ice on the broken ice load are studied systematically. The results show that the present numerical simulation method satisfies the calculation requirements. The spring coefficient and friction coefficient have more significant influence on the ice load compared to the viscous damping coefficient. The method proposed in this paper is helpful to ice load design in managed ice and ship model test in ice basin.
2022,44(3): 13-20 收稿日期:2020-09-30
DOI:10.3404/j.issn.1672-7649.2022.03.003
分类号:U661.31+1
基金项目:国家自然科学基金资助项目(51809124,51911530156);江苏省自然科学基金青年项目(BK20170576)
作者简介:杨斌(1994-),男,硕士研究生,主要从事海洋结构物冰载荷研究
参考文献:
[1] SVEINUNG L. Discrete element modelling of a broken ice field — Part II: simulation of ice loads on a boom[J]. Cold Regions Science and Technology, 1994, 22(4): 349–360
[2] HANSEN E H, SVEINUNG L. Modelling floating offshore units moored in broken ice: comparing simulations with ice tank tests[J]. Cold Regions Science and Technology, 1999, 29(2): 107–119
[3] 季顺迎, 王帅霖, 刘璐 极区船舶及海洋结构冰荷载的离散元分析[J]. 科技导报, 2017, 35(3): 72-80.
JI Shunying, WANG Shuailin, LIU Lu. Analysis of ice load on ship and offshore structure in polar region with discrete element method[J]. Science and Technology Review. 2017, 35(3): 72-80.
[4] 童波, 涂勋程, 谷家扬, 等. 基于参数化设计的浮冰区船舶冰阻力研究[J]. 船舶力学, 2019, 23(7): 755-762.
TONG Bo, TU Xun-cheng, GU Jia-yang, et al. Study on ship ice resistance based on parametric design of brash ice zone[J]. Journal of Ship Mechanics. 2019, 23(7): 755-762.
[5] SVEINUNG L. Discrete element modelling of a broken ice field — Part I: model development[J]. Cold Regions Science and Technology, 1994, 22(4): 339–347
[6] HANSEN E H, SVEINUNG L. Modelling floating offshore units moored in broken ice: Model description[J]. Cold Regions Science and Technology, 1999, 29(2): 97–106
[7] BELYTSCHKO T, LIN J I. A three-dimensional impact-penetration algorithm with erosion[J]. Computers and Structures, 1987, 25(1): 95–104
[8] 周昭明, 盛子寅, 冯悟时. 多用途货船的操纵性预报计算[J]. 船舶工程, 1983(6): 21-29.
ZHOU Zhaoming, SHENG Ziyin, FENG Wushi. On maneuverability prediction for multipurpose cargo ship[J]. Strip Engineering 1983(6): 21-29.
[9] SU B, RISKA K, MOAN T. A numerical method for the prediction of ship performance in level ice[J]. Cold Regions Science and Technology, 2010, 60(3): 177–188
[10] FALTINSEN O. M. Sea Loads on Ships and Offshore Structures[C]// UK: Cambridge University Press, Cambridge, 1990.
[11] SAVAGE S B. Marginal Ice Zone Dynamics Modelled by Computer Simulations Involving Floe Collisions[C]// Report prepared for Institute for Mechanical Engineering, National Research Council Canada, Ottawa, 1992.
[12] SAYED M, DALEY C. Experiments of Crushing Interaction Between Ice Foes[J]. Gene Therapy, 1992, 12(7): 607–616
[13] WANG Y S. Uniaxial compression testing of Arctic sea ice[C]// Proceedings of the Sixth International Conference POAC. 1981: 346-355.
[14] HOPKINS M A. On the mesoscale interaction of lead ice and floes[J]. Journal of Geophysical Research Oceans, 1996, 101(C8): 18315–18326
[15] BABIC M. Discrete particle numerical simulation of granular material behavior[C]// New York: Department of Civil and Environmental Engineering, Clarkson University, Potsdam, 1988: 88-11
[16] BABIC M, SHEN H H, SHEN H T, et al. The stress tensor in granular shear flows of uniform, deformable disks at high solids concentrations[J]. Journal of Fluid Mechanics, 1990, 219(1): 81–118
[17] LU Q, LARSEN J, TRYDE P, et al. On the role of ice interaction due to floe collisions in marginal ice zone dynamics[J]. Journal of Geophysical Research, 1989: 14525–14537
[18] BARKER A, TIMCO G W. The friction coefficient of a large ice block on a sand/gravel beach[C]// Canada: Proceedings 12th Workshop on the Hydraulics of Ice Covered Rivers, CRIPE'03, Edmonton, 2003.
[19] JI Shunying, LI Zilin, LI Chunhua, et al. Discrete element modeling of ice loads on ship hulls in broken ice fields[J]. Acta Oceanologica Sinica, 2013(11): 50-58.