超空泡技术可以大幅提高水下航行体的速度,但在实验中往往受入水状态的影响而运动失稳,针对该问题本文研究航行体的多稳态运动。基于动力学行为分布图和相轨迹图判定了航行体系统具有稳定运动、周期振荡、非周期混沌振荡3种稳态运动,以及稳定运动与周期运动共存、周期运动与混沌运动共存2种多稳态运动现象。并采用仿真工具验证了航行体的多稳态运动。从原理上定性解释了入水状态对航行体稳定性的影响。
Supercavitating technology can greatly improve the speed of underwater vehicle. However, the entry state often leads to the instability of the vehicle motion in the experiment. In this paper, the multistability motions of the vehicle are studied. Based on the dynamic behavior distribution diagram and phase trajectory diagram. The vehicle system is judged to have three kinds of steady motion, i.e. stable motion, periodic oscillation and aperiodic chaotic oscillation, and two kinds of multi steady motion, i.e. coexistence of stable motion and periodic motion, coexistence of periodic motion and chaotic motion. And the multistability motions of the vehicle are verified by simulation tools. The influence of the entry state on the stability of the vehicle is qualitatively explained in principle.
2022,44(3): 25-30 收稿日期:2021-05-24
DOI:10.3404/j.issn.1672-7649.2022.03.005
分类号:U661.3
作者简介:吕一品(1993-),女,博士后,研究方向为水下航行体动力学特性
参考文献:
[1] 周宇飞, 陈军宁, 徐超. 开关变换器中吸引子共存现象的仿真与实验研究[J]. 中国电机工程学报, 2005, 25(21): 30–33
ZHOU Yufei, CHEN Junning, XU Chao. Simulation and experimental study on the coexistence of attractors in switching converters[J]. Chinese Journal of electrical engineering, 2005, 25(21): 30–33
[2] LI Chunbiao, SPROTT J C. Multistability in a butterfly flow[J]. International Journal of Bifurcation and Chaos, 2013, 23(12): 259–271
[3] 郑国勇. 结构非线性超音速颤振系统的复杂响应研究[D]. 成都: 西南交通大学, 2007.
ZHENG Guoyong. Research on complex response of structural nonlinear supersonic flutter system[D]. Chengdu: Doctoral Dissertation of Southwest Jiaotong University, 2007.
[4] CHRISTIANSEN L, LEHN T, MOSEKILDE E, et al. Nonlinear Characteristics of Randomly Excited Transonic Flutter[J]. Mathematics and Computers in Simulation, 2002, 58(4–6): 385–405
[5] DIMITRIADIS G, LI J. Bifurcation behavior of airfoil undergoing stall flutter oscillations in low-speed wind tunnel[J]. AIAA Journal, 2009, 47(11): 2577–2596
[6] PAIDOUSSIS M, PRICE S, DE LANGRE E. Fluid structure interactions cross-flow- induced instabilities[M]. Cambridge University Press, 2010
[7] LIN G J, BALACHANDRAN B, ABED E H. Nonlinear dynamics and bifurcations of a supercavitating vehicle[J]. IEEE Journal of Oceanic Engineering, 2007, 32(4): 753–761
[8] DZIELSKI J, ANDREW K. A benchmark control problem for supercavitating vehicles and an initial inves-tigation of solutions[J]. Journal of Vibration and Control, 2003, 9(7): 791–804
[9] SPROTT J, WANG X, CHEN G. Coexistence of point, periodic and strange attractors[J]. International Journal of Bifurcation and Chaos, 2013.
[10] OBEID I, MORIZIO J, MOXON K, et al. Two multichannel integrated circuits for neural recording and signal processing[J]. IEEE Trans on Biomedical Engineering, 2003, 50: 255-258.
[11] 包伯成. 混沌电路导论[M]. 北京: 科学出版社, 2013.
[12] HASSOUNEH, M A, VINCENT N, BALAKUMAR B. Stability analysis and control of supercavitating vehicles with advection delay[J]. Journal of Computational and Nonlinear Dynamics, 2013, 8
[13] XINHUA Z, YAO S, ZENGKUN Q, et al. Catastrophe characteristics and control of pitching supercavitating vehicles at fixed depths[J]. Ocean Engineering, 2016, 112(15): 185–194
[14] CHENGJU Z, CONG W, WEI C, et al. Optimal control of supercavitating vehicles based on unscented Kalman filter[J]. Acta Armamentarii, 2019.