目前国内承建的吊舱推进船舶的吊舱设备主要依赖国外进口,但也逐渐开始国产化。吊舱推进轴系与传统桨轴系统轴系结构上有较大不同,如吊舱推进轴系较短而各段直径相差较大,材料也不尽相同,不能直接视为均质等截面轴,且受到的激励较多,研究其动力学特性及减振降噪,对于吊舱推进器研发阶段的低噪声设计具有重要意义。基于解析法,建立吊舱推进轴系的动力学模型,并通过与有限元法结果对比验证了方法的正确性。依据此模型,分析了轴承刚度、激励点、电机转轴尺寸对于受迫振动特性的影响。结果表明:轴承刚度的变化主要影响轴系中高阶共振峰的频率;在低频范围,螺旋桨的激励作用更加显著;电机转轴长度较长、直径与相邻轴段相差较大时,整体轴系在低频段会有更多振动响应。
At present, the pod equipment of pod propulsion ships constructed in China mainly relies on foreign imports, but it has gradually begun to be localized. The pod propulsion shafting system is quite different from the traditional propeller shaft system. For example, the propulsion shaft system of the pod is relatively short and the diameter of each section is quite different, and the materials are not same, so it cannot be directly regarded as a homogeneous shaft. Study its dynamic characteristics and reduce vibration and noise is of great significance to the low-noise design of the pod propulsion of the research and development stage. Based on the analytical method, the dynamic model of the pod propulsion shaft system is established in this paper, and the correctness of the method is verified by comparing with the results of the finite element method. Based on this model, the influence of bearing stiffness, excitation point and motor shaft size on vibration characteristics are analyzed. The results show that the change in bearing stiffness mainly affects the frequency of high-order resonance peaks in the shaft, the excitation effect of the propeller is more significant; when the motor shaft has a longer length and a large difference in diameter from the adjacent shaft section, the overall shaft system will have more vibration response in the low frequency range.
2022,44(3): 94-100 收稿日期:2021-05-06
DOI:10.3404/j.issn.1672-7649.2022.03.018
分类号:U661.44
基金项目:工业和信息化部高技术船舶项目(MC-201917-C09)
作者简介:张聪(1986-),女,博士,副教授,研究方向为船舶结构振动和噪声
参考文献:
[1] 唐文彪, 张聪, 欧阳武, 等. 大型船舶吊舱推进器发展现状[J]. 舰船科学技术, 2020, 42(7): 8–12
[2] 郑安宾, 田忠殿, 胡举喜, 等. 吊舱推进器的发展及应用前景[J]. 液压气动与密封, 2019, 39(6): 1–3+7
[3] 高宜朋, 曾凡明, 张晓锋. 吊舱推进器在舰船推进系统中的发展现状及关键技术分析[J]. 中国舰船研究, 2011, 6(1): 90–96
[4] 王占坤, 赵鹏, 郭越. 国际邮轮发展现状及对中国启示[J]. 海洋经济, 2012, 2(6): 15–19
[5] 杨刚, 孙瑞红, 叶欣梁. 豪华邮轮转向推进系统的技术探讨[J]. 物流科技, 2019, 42(12): 47–49
[6] 李兰美, 黄斐, 陈明铭. 豪华邮轮建造特点初步分析[J]. 造船技术, 2014(2): 10–13+26
[7] 高海波, 高孝洪, 陈辉, 等. 吊舱式电力推进装置的发展及应用[J]. 武汉理工大学学报(交通科学与工程版), 2006(1): 77–80
[8] 姚震球, 徐植融, 凌宏杰, 等. 拖式吊舱推进器的水动力特性分析[J]. 舰船科学技术, 2020, 42(9): 44–49
YAO Zhen-qiu, XU Zhi-rong, LING Hong-jie, et al. Analysis of hydrodynamic characteristics of pull podded thruster[J]. Ship Science and Technology, 2020, 42(9): 44–49
[9] 盛立, 熊鹰, 杨勇. 吊舱式CRP推进器水动力性能数值模拟[J]. 舰船科学技术, 2012, 34(10): 9–16
SHENG Li, XIONG Ying, YANG Yong. Experimental investigation and numberical simulation on the open-water performance of poded contra-rotating propulsor[J]. Ship Science and Technology, 2012, 34(10): 9–16
[10] 徐佩, 郭春雨, 王超, 等. 冰几何尺寸对吊舱推进器水动力性能的影响[J]. 哈尔滨工程大学学报, 2020, 41(11): 1642–1650
[11] 姜星星. 吊舱式船舶电力推进控制的研究分析[D]. 镇江: 江苏科技大学, 2013.
[12] 姚文龙, 涂志平, 池荣虎, 等. 船舶吊舱推进电机控制策略发展综述[J]. 舰船科学技术, 2017, 39(19): 1–6
YAO Wen-long, TU Zhi-ping, CHI Rong-hu, et al. Development of the control strategy for ship podded propulsion motor[J]. Ship Science and Technology, 2017, 39(19): 1–6
[13] 张旭, 骆伟, 张艳, 等. 吊舱式推进器支撑结构设计与校核[J]. 广东造船, 2019, 38(6): 34–37
[14] 郑建, 田忠殿, 王平, 等. 吊舱推进器温升试验方法设计研究[J]. 船舶工程, 2020, 42(S1): 189–191
[15] 刘洁, 李彦. 吊舱推进船舶操纵性仿真研究[J]. 科学技术与工程, 2011, 11(3): 507–512
[16] 刘洪梅, 许文兵, 陈雄, 等. 吊舱推进与传统推进船舶操纵性能对比分析[J]. 船舶力学, 2011, 15(5): 463–467
LIU Hong-mei, XU Wen-bing, CHEN Xiong, et al. Maneuvering performance comparison between POD and conventional ships[J]. Journal of Ship Mechanics, 2011, 15(5): 463–467
[17] 张少明, 崔浩, 蒋祖星. 基于PLC技术的双吊舱式电力推进回转系统设计[J]. 舰船科学技术, 2018, 40(22): 121–123
[18] 赵鹏飞, 夏利娟, 张鑫. 邮轮推进器舱与吊舱推进器耦合振动分析[J]. 舰船科学技术, 2019, 41(11): 66–70
[19] PROHL M A. A method for calculating vibration frequency and stress of a banded group of turbine buckets[J]. Trans. ASME, 1958: 169–180
[20] 蔡双利, 曾凡明, 唐成. 某电力推进轴系横向振动影响因素分析[J]. 船海工程, 2013, 42(1): 118–120+125
[21] 唐天国. 基于传递矩阵法的船舶推进轴振动特性研究[J]. 舰船科学技术, 2017, 39(8): 31–33
TANG Tian-guo. Study on vibration characteristics of ship propulsion shaft based on transfer matrix method[J]. Ship Science and Technology, 2017, 39(8): 31–33
[22] YANG Yong, CHE Chidong, TANG Wenyong. Shafting coupled vibration research based on wave approach[J]. Journal of Shanghai Jiaotong University Science, 2014, 19(3): 325?336.
[23] 秦丽. 大型船舶推进轴系功率流分析理论与方法研究[D]. 武汉: 武汉理工大学, 2014.
[24] 李全超, 俞强, 刘伟. 支撑参数对船舶轴系-轴承-基座系统振动特性影响研究[J]. 舰船科学技术, 2016, 38(11): 101–104
LI Quan-chao, YU Qiang, LIU Wei. Effect of supporting parameters on marine shaft vibration characteristics[J]. Ship Science and Technology, 2016, 38(11): 101–104
[25] ZOU Donglin, ZHANG Jianbo, TA Na, et al. Study on the axial exciting force characteristics of marine propellers considered the effect of the shaft and blade elasticity[J]. Applied Ocean Research, 2019, 89: 141?153.
[26] 田哲, 张聪, 严新平, 等. 计入船体变形激励的大型船舶推进轴系振动性能研究[J]. 船舶力学, 2015, 19(11): 1368–1376
TIAN Zhe, ZHANG Cong, YAN Xin-ping, et al. Vibration characteristic study of large vessel’s shaft system taking into account the ship hull deformation excitations[J]. Journal of Ship Mechanics, 2015, 19(11): 1368–1376
[27] ZHANG Cong, TIAN Zhe, YAN Xinping. Analytical analysis of the vibration of propulsion shaft under hull deformation excitations[J]. Journal of V: bioengineering, 2016, 18(1): 44-55.
[28] 刘延柱, 陈文良, 陈立群. 振动力学[M]. 北京: 高等教育出版社, 2011.
[29] 罗晨. 水面舰船轴系—尾部结构耦合振动及水声特性研究[D]. 北京: 中国舰船研究院, 2014.