基于舰船发动机燃油电磁阀驱动电路,分析电磁阀电流特性与故障情况下的电流特征,发现燃油电磁阀的电流波动,对电磁阀故障具有重要影响。因此,利用小波包分解技术重构电流信号,提取电流信号的频带幅值,将其作为舰船发动机燃油电磁阀不同故障的特征向量,将该特征向量输入多输入层卷积神经网络中,经过训练、测试的多输入层卷积神经网络可以准确输出电磁阀的不同故障类型。实验结果表明,该方法可准确提取舰船发动机燃油电磁阀故障信号中的各类状态特征,诊断出电磁阀正常、弹簧断裂和阀芯卡死的故障类型,可靠性高。
A real-time fault diagnosis method for Marine engine fuel solenoid valve is proposed to realize the real-time diagnosis of different types of solenoid valve faults. Based on the driving circuit of fuel oil solenoid valve of ship engine, the current characteristics of the solenoid valve and the current characteristics under the condition of failure are analyzed. It is found that the current fluctuation of fuel oil solenoid valve has an important effect on the failure of solenoid valve. Therefore, the current signal, using wavelet packet decomposition technique is to extract frequency amplitude of current signal, as a ship engine fuel solenoid valve different fault feature vector, the feature vector convolution neural network input multiple input layer, after training, testing of multiple input layer convolution neural network can accurately output different fault types of electromagnetic valve. The experimental results show that this method can accurately extract all kinds of fault features from the fault signals of the fuel solenoid valve of ship engine, and diagnose the fault types of normal solenoid valve, broken spring and stuck valve core, with high reliability.
2022,44(3): 121-124 收稿日期:2021-08-25
DOI:10.3404/j.issn.1672-7649.2022.03.023
分类号:TH212
基金项目:2019年船舶技术专业委员会科研课题
作者简介:孙月秋(1978-),女,硕士,副教授,研究方向为动力工程技术
参考文献:
[1] 彭陈, 赵春生. 某船主机燃油反冲洗滤器故障分析[J]. 船海工程, 2016, 45(4): 134–136
[2] 汪玉凤, 祝杰, 张影. 基于H桥电压与电流的级联SAPF故障诊断方法[J]. 电力系统及其自动化学报, 2019, 31(6): 80–84,92
[3] 龙霞飞, 杨苹, 郭红霞, 等. 基于KELM和多传感器信息融合的风电齿轮箱故障诊断[J]. 电力系统自动化, 2019, 43(17): 132–139
[4] 孙淑光, 周琪. 基于残差决策的自动飞行控制系统远程实时故障诊断[J]. 计算机应用, 2020, 40(5): 1522–1528
[5] 祝勇俊, 孙权, 朱其新. 基于WPES-SAE的MPPT控制器多故障诊断方法[J]. 电力电子技术, 2019, 53(7): 98–101
[6] 薛铮, 孙勇, 董政呈, 等. 基于模糊Petri网的用电信息采集系统故障诊断方法[J]. 电测与仪表, 2019, 56(13): 64–69
[7] 徐继伟, 宋保业, 公茂法. 基于深度神经网络的多电平逆变器故障诊断[J]. 电测与仪表, 2019, 56(2): 123–128
[8] 李强, 车文龙. 基于改进粒子群优化神经网络的电机故障诊断[J]. 电气传动, 2020, 50(1): 121–126