针对侧扫声呐图像对比度低、噪声强度大特点导致的部分传统滤波方法降噪能力的不足,提出一种基于剪切波变换的侧扫声呐图像降噪方法。首先对侧扫声呐图像进行剪切波变换,在考虑噪声水平的基础上,对剪切系数进行阈值处理,再将修正后的系数进行剪切波逆变换,重构侧扫声呐图像,实现了侧扫声呐图像的降噪。实验结果表明,该方法相比于维纳滤波、小波滤波和非局部均值滤波等常用降噪方法,可以获取更好的图像效果,在侧扫声呐图像降噪中具有综合优势。
In view of the fact that the side-scan sonar image has the characteristics of low contrast and large noise intensity, which led to noise reduction effect of some traditional filter methods is insufficient, a denoising method based on shearlet transform is proposed. First, the side-scan sonar image is divided with shearlet transform. Then, shearlet coefficients are processed by the threshold method considering the noise measrement. Finally, the image is reconstructed through the inverse shearlet transform with the amended coefficients, and the purpose of image denoising is realized. The experiment results show that the method of this paper is suitable for side-scan sonar image processing, obtains better image denoising effect than Wiener filtering, wavelet filtering and non-local means filtering, has comprehensive advantages in side-scan sonar image noise reduction.
2022,44(3): 129-134 收稿日期:2021-06-23
DOI:10.3404/j.issn.1672-7649.2022.03.025
分类号:P229.3
基金项目:国家自然科学基金资助项目(41876103)
作者简介:王磊(1984-),男,硕士,助理工程师,主要从事海洋测绘和信号处理研究工作
参考文献:
[1] 滕惠忠, 严晓明, 李胜全, 等. 侧扫声纳图像增强技术[J]. 海洋测绘, 2004, 24(2): 47–49
TENG Huizhong, YAN Xiaoming, LI Shengquan, et al. Processing techniques of enhancement for side scan sonar images[J]. Hydrographic Surveying and Charting, 2004, 24(2): 47–49
[2] 熊传梁, 夏伟, 孙新轩, 等. 一维小波变换在侧扫声纳图像去噪中的应用[J]. 海洋测绘, 2013, 33(3): 29–32
XIONG Chuanliang, XIA Wei, SUN Xinxuan, et al. Application of 1D wavelet transform in denoising side-scan sonar images[J]. Hydrographic Surveying and Charting, 2013, 33(3): 29–32
[3] 李海滨, 滕惠忠, 宋海英, 等. 小波函数对侧扫声纳图像滤波效果的影响分析[J]. 海洋测绘, 2009, 29(3): 65–67
LI Haibin, TENG Huizhong, SONG Haiying, et al. The impact of the application of wavelet transform on side-scan sonar image filtering[J]. Hydrographic Surveying and Charting, 2009, 29(3): 65–67
[4] 郑雄波, 张晓威. 多小波变换在声纳图像降噪中的 应用研究[J]. 数值计算与计算机应用, 2011, 32(2): 89–96
ZHENG Xiongbo, ZHANG Xiaowei. Study to the application of multiwavelets transforms in sonar image denoising[J]. Journal on Numerical Methods and Computer Applications, 2011, 32(2): 89–96
[5] 赵四能, 张丰, 杜震洪, 等. 基于提升小波的方向扩散算法实现侧扫声纳图像去噪[J]. 浙江大学学报(理学版), 2012, 39(5): 593–598
ZHAO Sineng, ZHANG Feng, DU Zhenhong, et al. The directional diffusion based on discrete wavelet algorithm to achieve side-scan sonar image denoising[J]. Journal of Zhe-jiang University( Science Edition), 2012, 39(5): 593–598
[6] 焦李成, 谭山. 图像的多尺度几何分析: 回顾和展望[J]. 电子学报, 2003, 31(12A): 1975–1981
JIAO Licheng, Tanshan. Development and prospect of image multiscale geometric analysis[J]. Acta Electronica Sinica, 2003, 31(12A): 1975–1981
[7] LABATE D, KUTYNIOK G. Sparse multidimensional representation using shearlets[J]. Proc Spie, 2005, 5914(1): 254–262
[8] STARCK J L, CAND S E J, DONOHO D L. The curvelet transform for image denoising[J]. IEEE Transactions on Image Processing, 2002, 11(6): 670–684
[9] DO M N, VETTERLIM. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing a Publication of the IEEE Signal Processing Society, 2005, 14: 2091–2106
[10] GUO K, LABATE D. Optimally sparse multidimensional representation using shearlets[J]. SIAM Journal on Mathematical Analysis, 2007, 39(1): 298–318.
[11] 郭强. 基于剪切波变换的图像统计模型及其应用研 究[D]. 上海: 上海大学, 2010: 11-12.
GUO Qiang. Research on shearlet-based statistical model for images and its applications[D]. Shanghai: Shanghai University, 2010: 11-12.
[12] 刘成皓, 刘文波, 张弓, 等. 基于Shearlet变换的SAR图像自适应去噪算法[J]. 电子科技, 2012, 25(6): 83–86
LIU Chenghao, LIU Wenbo, ZHANG Gong, et al. Self-adaptive denoising for SAR image based on shearlet transform[J]. Electronic Science and Technology, 2012, 25(6): 83–86
[13] 田峥. 基于平滑剪切波变换的医学磁共振图像去噪算法研究[D]. 杭州: 浙江工业大学, 2019: 9-10.
TIAN Zheng. Smooth shearlet transformation based denoising algorithm reasearch for medical magnetic resonance image[D]. Hangzhou: Zhejiang University of Technology, 2019: 9-10.
[14] 何旭. 基于多尺度几何分析和各向异性扩散的医学超声图像去噪算法研究[D]. 昆明: 云南大学, 2016: 37-42.
HE Xu. Research on multiscale geometric analysis and anisotropic diffusion denoising for ultraasound images[D]. Kuming: Yunan University, 2016: 37-42.
[15] 郑晶, 余可, 王鹏越, 等. 基于Shearlet变换的探地雷达数据噪声压制研究[J]. 矿业科学学报, 2017, 2(3): 228–234
ZHENG Jing, YU Ke, WANG Pengyue, et al. GPR data noise attenuation based on the Shearlet transform[J]. Journal of Mining Science and Technology, 2017, 2(3): 228–234
[16] 李元. 基于多尺度变换的井中微地震噪声压制方法的研究[D]. 长春: 吉林大学, 2019: 31-47.
LI Yuan. Research on downhole microseismic noise suppression method based on multi-scale transformation[D]. Changchun: Jilin University, 2019: 31-47.
[17] GUO K, LIM W Q, LABATE D, et al. Wavelets with composite dilations[J]. Electronic Research Amouncements of AMS, 10: 78–87, 2004.
[18] EASLEY G R, LABATE D, LIM W. Sparse directional image representations using the shearlet transform[J]. Applied and Computational Harmonic Analysis, 2008(25): 25-46.
[19] IMMERKAER J. Fast noise variance estimation[J]. Computer Vision and Image Understanding, 1996, 64(2): 300–302