针对单浮标极区惯性导航(INS)/超短基线(USBL)组合导航模型中未考虑极区恶劣观测环境下浮标卫星导航(GNSS)定位误差的问题,本文通过在组合导航模型中引入浮标位置误差,进而推导分析其对极区INS/USBL组合导航估计的影响。同时,构建一种顾及浮标GNSS位置误差的横向INS/USBL组合导航模型,并利用仿真实验对理论结果进行验证。仿真结果表明,INS/USBL组合导航结果显著受GNSS误差影响,且GNSS误差越大,其对INS/USBL组合导航影响越明显,甚至导致组合导航结果失效。在GNSS观测信号不良的条件下,顾及浮标GNSS位置误差的横向INS/USBL组合导航模型相对于传统模型在横向经度、横向纬度和高度方向分别提升41.3%、61.2%、71.6%的定位精度。
In order to solve the problem that the Global Navigation Satellite System(GNSS) positioning error of the single buoy is not considered in the Inertial Navigation System(INS)/ Ultra-Short Baseline(USBL) integrated navigation model in the polar region under the harsh observation environment in the polar region, this paper introduces the buoy position error into the integrated navigation model, and then analyzes its influence on the INS/USBL integrated navigation estimation. At the same time, a transverse INS/USBL integrated navigation model considering the GNSS position error of buoys is constructed, and the theoretical results are verified by simulation experiments. The simulation results show that the INS/USBL integrated navigation results are significantly affected by the GNSS error, and the larger the GNSS error, the more obvious the impact on the INS/USBL integrated navigation results, and even lead to the failure of the integrated navigation results. Under the condition of poor GNSS observation signal, compared with the traditional model, the transverse INS/USBL integrated navigation model, which takes into account GNSS position error, improves the positioning accuracy of the transverse longitude, transverse latitude and altitude by 41.3%, 61.2% and 71.6%, respectively.
2025,47(6): 138-144 收稿日期:2024-5-24
DOI:10.3404/j.issn.1672-7649.2025.06.023
分类号:U666.11
基金项目:国家重点研发计划项目(2021YFB3901300);国家自然科学基金资助项目(42204035,62073093)
作者简介:马子凡(1997 – ),男,硕士研究生,研究方向为极区组合导航
参考文献:
[1] 中华人民共和国国务院新闻办公室. 中国的北极政策[N]. 人民日报, 2018-01-27(011).
[2] ZHANG B, JI D, LIU S, et al. Autonomous underwater vehicle navigation: a review[J]. Ocean Engineering, 2023, 273: 113861.
[3] 程建华, 刘佳鑫, 赵琳. 极区航海导航与定位保障技术发展综述[J]. 中国舰船研究, 2021, 16(5): 16-29.
CHENG J H, LIU J X, ZHAO L. Polar marine navigation and positioning technology development review[J]. Chinese ships research, 2021, 16(5): 16-29.
[4] 徐晓苏, 豆嫚. 基于横向地理坐标系的极区惯性导航方法研究[J]. 华中科技大学学报(自然科学版), 2014, 42(12): 116-21.
[5] 张汉武, 王海波, 张萍萍. 基于横向地球坐标系的极区惯导机械编排研究[J]. 舰船电子工程, 2016, 36(8): 68-71+122.
[6] 康瑛瑶. 格网惯性/声学极区组合导航关键技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2020.
[7] 彭文生, 孙付平, 蔡韧鸣, 等. 极区格网惯性导航性能分析[J]. 导航定位学报, 2017, 5(2): 38-43+54.
[8] 杨元喜. 弹性PNT基本框架[J]. 测绘学报, 2018, 47(7): 893-898.
[9] XU C L, XU C H, WU C D, et al. Accurate two-step filtering for AUV navigation in large deep-sea environment[J]. Applied Ocean Research, 2021, 115: 102821.
[10] FOSSEN T I. Feedback error-state Kalman filter with time-delay compensation for hydroacoustic-aided inertial navigation of underwater vehicles[J]. Control Engineering Practice, 2023, 138: 1-11.
[11] MING X Y, YE L, YUE M L, et al. A fast way of single-beacon localization for AUVs[J]. Applied Ocean Research, 2022, 119: 1-11.
[12] HAO R G, ZHI W Q, XIAO J W, et al. A robust attitude estimation algorithm for seabed inverted ultra-short baseline[J]. Ocean Engineering, 2023, 280(7): 1–10.
[13] 汤均博, 周立. 基于GNSS浮标的实时水深船舶导航模型[J]. 淮海工学院学报(自然科学版), 2014, 23(1): 60-62.
[14] 赵韵. SINS/USBL组合定位技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2022.
[15] WANG D, WANG B, HUANG H, et al. Robust filter method for SINS/DVL/USBL tight integrated navigation system[J]. IEEE Sensors Journal, 2023, 23(10): 10912-10923.
[16] CHENG S, CHENG J, ZANG N, et al. Polar SINS/USBL integrated navigation algorithm considering acoustic communication delays[C]// proceedings of the 5th International Symposium on Autonomous Systems, ISAS 2022, 2022.
[17] 汪晓雨. 基于SINS/DVL/USBL的UUV极区组合导航技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2019.
[18] 翁铖铖. SINS/USBL水下组合定位系统的标定与组合算法研究[D]. 南京: 东南大学, 2020.
[19] CHENG S X, CHENG J H, ZANG N, et al. Adaptive non-holonomic constraint aiding multi-gnss ppp/ins tightly coupled navigation in the urban environment[J]. GPS Solutions, 2023, 27(3): 152-167.