在低噪声泵喷推进器设计中,要求静止和转动部件的固有频率相互避开以实现低噪声设计。本文基于FEM理论,对转子和复合材料定子导管组合体的干、湿模态固有频率进行数值研究和试验验证,分析定子导管组合体受内壁面激励产生的振动响应。转子前3阶干、湿模态固有频率数值误差小于5%;定子导管组合体前3阶干模态固有频率数值误差分别为2.8%、0.6%、19.2%,湿模态固有频率数值误差分别为9.5%、10.4%、45%;受内壁面单位载荷激励时,定子导管组合体沿传动轴的振动加速度级最大,较侧向大4.2 dB。为实现最佳减振效果,在减振设计中定子导管组合体的固有频率预报值应考虑10%误差以完全避开转子前3阶轴频和叶频,同时应考虑固有振型对轴向耦合振动的影响。
In the design of low noise pump jet propulsor (PJP), the natural frequencies of stationary and rotating components are required to avoid each other to achieve low noise design. Based on the FEM theory, this paper conducts numerical research and experimental verification of the dry and wet modal natural frequencies of the rotor and composite stator conduit assembly, and then analyzes the vibration response of the stator conduit assembly excited by the inner wall. The numerical error of the first three dry and wet modal natural frequencies of the rotor is less than 5%. The numerical errors of the first three dry mode natural frequencies of the stator are 2.8%, 0.6% and 19.2%, respectively, and the numerical errors of the wet mode natural frequencies are 9.5%, 10.4% and 45%, respectively. When excited by the unit load on the inner wall, the vibration acceleration level of the stator conduit assembly along the axial direction is the largest, 4.2 dB higher than the lateral direction. In order to achieve the best vibration reduction effect, a 10% error should be considered for the predicted natural frequency of the stator conduit assembly in the vibration reduction design to avoid the first three order shaft and blade frequencies of the rotor. At the same time, the influence of natural vibration mode on axial coupled vibration should be considered.
2025,47(7): 37-42 收稿日期:2024-5-25
DOI:10.3404/j.issn.1672-7649.2025.07.008
分类号:U664.3
基金项目:国家自然科学基金资助项目(U2341242)
作者简介:王仁智(1996-),男,硕士,工程师,研究方向为推进器设计
参考文献:
[1] 王天奎, 唐登海. 泵喷推进器——低噪声的核潜艇推进方式[J]. 现代军事, 2006(7): 52-54.
[2] 石慧, 闫政涛, 李赫, 等. 主被动一体化隔振装置设计研究[J]. 船舶, 2019, 30(1): 128-135.
[3] YOUNG Y L. Time-dependent hydro-elastic analysis of cavitating propulsors[J]. Journal of Fluids & Structures, 2007, 23(2): 269-295.
[4] DAS H N , KAPURIA S. On the use of bend–twist coupling in full-scale composite marine propellers for improving hydrodynamic performance[J]. Journal of Fluids & Structures, 2016, 61: 132-153.
[5] GHASSEMI H, SARYAZDI M G, GHASSABZADEH M. Influence of the skew angle on the hydro-elastic behaviour of a composite marine propeller[J]. Proceedings of the Institution of Mechanical Engineers Part M Journal of Engineering for the Maritime Environment, 2012, 226(4): 346-359.
[6] ZOU D , XU J , ZHANG J , et al. The hydro-elastic analysis of marine propellers considering the effect of the shaft: Theory and experiment[J]. Ocean Engineering, 2021, 221: 108547.
[7] 黄政, 熊鹰, 柳凯, 等. 复合材料螺旋桨应变模态计算与试验[J]. 海军工程大学学报, 2015, 27(6): 27-30.
HUANG Z, XIONG Y, LIU K, et al. Calculation and test of composite propeller’s strain modal[J]. Journal of Naval University of Engineering, 2015, 27(6): 27-30.
[8] 杨国栋, 李天匀, 朱翔, 等. 浸没圆柱壳低频自振频率计算中流固与声固耦合模型统一性分析[J]. 中国舰船研究, 2016, 11(4): 87-92.
YANG G D, LI T Y, ZHU X, et al. Unity analysis of the fluid-structure coupling model and the acoustic-structure coupling model in the natural frequency calculation of a submerged cylindrical shell[J]. Chinese Journal of Ship Research, 2016, 11(4): 87-92.
[9] 张帅, 李天匀, 郭文杰, 等. 水下环肋圆锥壳临界压力—频率特性分析[J]. 中国舰船研究, 2019, 14(2): 77-82.
ZHANG S, LI T Y, GUO W J, et al. Critical pressure-frequency characteristics analysis for ring-stiffened submerged conical shells[J]. Chinese Journal of Ship Research, 2019, 14(2): 77-82.
[10] 谢基榕, 沈顺根, 吴有生. 推进器激励的艇体辐射噪声及控制技术研究现状[J]. 中国造船, 2010, 51(4): 234-241.
XIE J R, SHEN S G, WU Y S, Research status on noise radiation from vibrating hull induced by propeller and reduction measures[J]. Shipbuilding of China, 2010, 51(4): 234-241.
[11] 秦春云, 杨志荣, 饶柱石, 等. 船舶推进轴系纵向振动抑制研究[J]. 噪声与振动控制, 2013, 33(3): 147-152.
QIN C Y, YANG Z R, RAO S Z, et al. Study on suppression of the longitudinal vibration of ship’s propulsion shafting system[J]. Noise and Vibration Control, 2013, 33(3): 147-152.
[12] 武多听, 陈锋, 耿厚才, 等. 螺旋桨激励力作用下舰船振动及水下声辐射特性研究[J]. 噪声与振动控制, 2020, 40(3): 164-169.
WU D T, CHEN F, GENG H C, et al. Research on the ship vibration and underwater acoustic radiation characteristics under propeller excitation[J]. Noise and Vibration Control, 2020, 40(3): 164-169.
[13] 于丰宁. 新型泵喷推进器结构设计及其流激振动噪声特性研究[D]. 上海:上海交通大学, 2019.
[14] MCCOLLUM M D, SIDERS C M. Modal analysis of a structure in a compressible fluid using a finite element/boundary element approach[J]. The Journal of the Acoustical Society of America, 1996, 99(4): 1949-1957.