船舶推进轴系校中技术是保障船舶性能与安全的关键技术之一。通过对比分析刚性轴系计算法、三弯矩方程法等传统校中计算方法与有限元技术,发现有限元技术在模拟轴系弹性变形、处理复杂结构和边界条件方面优势显著。探讨了不同工况下船体变形对轴系校中的影响,结果表明船体变形会改变轴系安装基线和轴承负荷分布,影响轴系运行、寿命及传动效率。通过优化轴系校中方法,可降低轴承磨损率并提高轴系疲劳寿命。本文提出的方法为船舶推进轴系校中提供了重要参考依据。
Alignment technology of ship propulsion shafting is one of the key technologies to ensure ship performance and safety. It is found that finite element technology has obvious advantages in simulating elastic deformation of shafting and dealing with complex structure and boundary conditions by comparing the traditional calculation methods such as rigid shafting method and three-moment equation method with finite element technology. The influence of hull deformation on shafting calibration under different working conditions is discussed. The results show that hull deformation will change the installation base of shafting and bearing load distribution, and affect the operation, life and transmission efficiency of shafting. By optimizing the shafting alignment method, the bearing wear rate can be reduced and the fatigue life of shafting can be increased. The method presented in this paper provides an important reference for the alignment of ship propulsion shafting.
2025,47(7): 49-53 收稿日期:2025-2-18
DOI:10.3404/j.issn.1672-7649.2025.07.010
分类号:U667.65
基金项目:山东省高等学校科技计划项目(J17KB153)
作者简介:李晓岩(1982-),女, 硕士,副教授,研究方向为软件工程及大数据等
参考文献:
[1] 蒋平, 朱汉华, 严新平, 等. 非刚性轴承润滑与变形耦合下的轴系校中研究[J]. 船舶力学, 2017, 21(2): 211-217.
JIANG P, ZHU H H, YAN X P, et al. Research on bearing lubrication and deformation coupling in shaft alignment[J]. Journal of Ship Mechanics, 2017, 21(2): 211-217.
[2] 谷美邦, 石好, 周建辉. 基于实体建模的船舶轴系有限元校中分析[J]. 中国水运(下半月), 2020, 20(18): 68-69.
GU M B, SHI H, ZHOU J H. Finite element analysis of ship shaft alignment based on entity modeling[J]. China Water Transport (Lower Deck), 2020, 20(18): 68-69.
[3] 韩亚洲, 张亮, 高辰, 等. 某大型滚装船轴系校中的船体变形仿真分析[J]. 船海工程, 2024, 53(6): 21-25.
HAN Y Z, ZHANG L, GAO C, et al. Simulation analysis of hull deformation in the shaft alignment of a large Ro-Ro ship[J]. Ship & Ocean Engineering, 2024, 53(6): 21-25.
[4] 万忠, 王佳颖, 刘涛. LNG船用于轴系校中的船体变形计算分析[J]. 船舶与海洋工程, 2016, 32(6): 16-21.
WAN Z, WANG J Y, LIU T. Analysis of LNG carrier's hull deformation for shafting alignment[J]. Ship & Ocean Engineering, 2016, 32(6): 16-21.
[5] 李冬梅. 船舶轴系动态校中三弯矩方程的应用[J]. 舰船科学技术, 2017, 39(16): 73-75.
LI D M. The application of three moment equation in dynamic alignment of ship shafting[J]. Ship Science and Technology, 2017, 39(16): 73-75.
[6] 张志康, 高明星, 叶星宏, 等. 船舶有限元模型标准化及程序开发[J]. 船海工程, 2023, 52(6): 44-48.
ZHANG Z K, GAO M X, YE X H, et al. Standardization of ship finite element model and program development[J]. Ship & Ocean Engineering, 2023, 52(6): 44-48.
[7] 罗文俊, 李春通, 韦朋余, 等. 基于知识的船舶结构快速有限元建模方法[J]. 中国舰船研究, 2024, 19(6): 35-44.
LUO W J, LI C T, WEI P Y, et al. Knowledge-based rapid finite element modeling method for ship structures[J]. Chinese Journal of Ship Research, 2024, 19(6): 35-44.
[8] 刘金林, 赖国军, 姜忠龙, 等. 不同校中状态对某轴系回旋振动的影响研究[J]. 船舶力学, 2022, 26(2): 264-273.
LIU J L, LAI G J, JIANG Z L, et al. Influence of different alignment states on the whirling vibration of a shaft system[J]. Journal of Ship Mechanics, 2022, 26(2): 264-273.