为全面模拟桁架式桅杆的复杂几何形状和材料特性,精准捕捉结构中的应力分布情况,针对舰船桁架式桅杆结构强度展开计算分析。首先,通过有限元法,模拟桁架式桅杆的复杂几何形状和材料特性,建立桅杆结构的有限元模型;然后,针对不同铝合金规格构件与不同加固方案下,通过分析桅杆结构的应力分布情况,完成对结构强度的分析。实验证明:不同规格构件的计算应力均低于许用最大应力值,表明顶桅与主桅的铝合金构件在结构强度上均能满足稳定性要求;通过比较横摇载荷条件下各方案的长细比,发现在桅杆侧向及纵向增设斜向支撑杆件并结合横向隔层加固方案,可以明显降低长细比,表明此种方案能有效提升桁架式桅杆的整体稳定性,使其在面对横摇运动时具备更优的抵抗能力。
To comprehensively simulate the complex geometric shape and material characteristics of truss masts, accurately capture the stress distribution in the structure, and conduct calculation and analysis on the strength of ship truss masts. Firstly, by using the finite element method, the complex geometric shape and material properties of the truss mast are simulated, and a finite element model of the mast structure is established; Then, based on different aluminum alloy specifications and reinforcement schemes, the stress distribution of the mast structure is analyzed to complete the analysis of the structural strength. Experimental results have shown that the calculated stress of components of different specifications is lower than the maximum allowable stress value, indicating that the aluminum alloy components of the top mast and main mast can meet the stability requirements in terms of structural strength; By comparing the aspect ratios of various schemes under lateral load conditions, it was found that adding diagonal support rods in both the lateral and longitudinal directions of the mast, combined with a transverse interlayer reinforcement scheme, can significantly reduce the aspect ratio. This indicates that this scheme can effectively improve the overall stability of the truss mast, enabling it to have better resistance to lateral motion.
2025,47(7): 64-68 收稿日期:2025-1-10
DOI:10.3404/j.issn.1672-7649.2025.07.013
分类号:U663.6
基金项目:2019年武汉船舶职业技术学院科研项目(2019y01)
作者简介:黄迎春(1982-),女,硕士,讲师,研究方向为船舶结构安全性与可靠性
参考文献:
[1] 牛温超, 孙朝阳, 盛忠起, 等. 无人帆船翼帆桅杆根部应力影响因素及其影响规律研究[J]. 中国机械工程, 2023, 34(22): 2647-2658.
NIU W C, SUN Z Y, SHENG Z Q, et al. Study on influencing factors of stress at roots of autonomous sailboat wing sail mast and its influencing laws[J]. China Mechanical Engineering, 2023, 34(22): 2647-2658.
[2] 刘宁, 陈乾, 张昆, 等. 不同连接形式下筒形桅杆结构强度与振动分析[J]. 武汉理工大学学报(交通科学与工程版), 2023, 47(1): 96-101+108.
LIU N, CHEN Q, ZHANG K, et al. Structural strength and vibration analysis of cylindrical mast under different connection forms[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2023, 47(1): 96-101+108.
[3] 刘慕广, 王哲, 张春生, 等. 台风边缘区风场特性及其作用下高耸桅杆结构风效应实测研究[J]. 建筑结构学报, 2023, 44(5): 1-9.
LIU M G, WANG Z, ZHANG C S, et al. Field measurements of wind characteristics at periphery of typhoons and wind effect on high-rise guyed masts[J]. Journal of Building Structures, 2023, 44(5): 1-9.
[4] TSAI L W, ALIPOUR A. Physics-informed long short-term memory networks for response prediction of a wind-excited flexible structure. Engineering structures, 2023, 275(15): 1-13.
[5] 龚曙光, 徐凡业, 谢桂兰, 等. 桅杆长径比对有限长锥台形捕能柱涡激横向摆动特性的影响[J]. 振动与冲击, 2023, 42(9): 261-267,303.
GONG S G, XU F Y, XIE G L, et al. Effects of length-diameter ratio of mast on vortex-induced lateral swing characteristics of finite length cone-shaped energy capture column[J]. Journal of Vibration and Shock, 2023, 42(9): 261-267,303.
[6] 彭利坤, 秦珩, 陈佳宝, 等. 潜艇转舵时舵叶材料及舵杆位置对流激噪声特性的影响[J]. 中国舰船研究, 2022, 17(3): 213-220.
PENG L K QIN H, CHEN J B, et al. Influence of rudder blade material and rudder stock position on characteristics of induced noise in submarine rudder turning[J]. Chinese Journal of Ship Research, 2022, 17(3): 213-220.
[7] 费燕, 陈清林, 林少芬. 复合材料帆船桅杆强度可靠性分析[J]. 船舶工程, 2020, 42(1): 47-52+147.
FEI Y, CHEN Q L, LIN S F. Strength reliability analysis of composite material mast of sailing boat[J]. Ship Engineering, 2020, 42(1): 47-52+147.