随着全球航运业的持续发展,船舶朝着更大型化、更高速化的方向发展。然而,船舶尺寸的增长与航道条件的发展之间存在不对等现象且沿岸交通状况的日益复杂,会导致船舶受限水域范围进一步扩大的现象。因此,深入研究船舶在受限水域中的水动力特性对船舶安全航行具有重要意义。本文基于计算流体力学(CFD)软件STAR-CCM+对KCS集装箱船在半圆形突体岸壁附近航行流压场特性进行了数值模拟。探究不同船速、不同水深吃水比以及不同船岸距离下对船舶流压场变化情况。研究表明,速度场以及压力场随着船速的增加而增加、水深吃水比以及船岸距离的增加而减小。基于此,船舶在岸边航行,可采取扩大船舶与岸壁之间的距离至0.3L以上、减小船舶航行速度至8 kn以下、尽可能选择高水深吃水比等措施,以减少船舶航行阻力和下沉量。此研究成果可为船舶在受限水域岸壁间安全航行、相关单位船舶设计制作和操纵规程制定提供科学依据。
As the global shipping industry continues to develop, ships are moving towards larger and higher speeds. However, the mismatch between the growth of ship size and the development of waterway conditions and the increasing complexity of coastal traffic conditions will lead to the further expansion of the restricted water area for ships. Therefore, an in-depth study of the hydrodynamic characteristics of ships in restricted waters is of great significance to the safe navigation of ships. In this paper, numerical simulations are carried out based on the Computational Fluid Dynamics (CFD) software STAR-CCM+ to investigate the flow and pressure characteristics of a KCS container ship sailing in the vicinity of a semi-circular protruding wall. The changes in the flow and pressure fields of the ship are investigated under different ship speeds, different draft ratios and different shore distances. The study shows that the velocity and pressure fields increase with the increase of ship speed, and decrease with the increase of depth-to-draft ratio and shore distance. Based on this, ships navigating alongside the shore can take measures such as expanding the distance between the ship and the shore wall to more than 0.3L, reducing the speed of the ship to less than 8kn, and choosing a high depth-to-draft ratio as much as possible in order to reduce the resistance of the ship's navigation and the amount of sinking. The research results can provide scientific basis for the safe navigation of the ship between the shore wall in the restricted waters, and the design and manufacture of the ship and the formulation of the manoeuvring regulations of the relevant units.
2025,47(7): 69-74 收稿日期:2024-6-18
DOI:10.3404/j.issn.1672-7649.2025.07.014
分类号:U676.1
基金项目:浙江省科技厅公益性项目(2017C3373);2023年浙江省大学生科技创新活动计划(2023R411038);2024年浙江省新苗人才计划(2024R411B037)
作者简介:毛超进(2000-),男,硕士研究生,研究方向为通航安全保障
参考文献:
[1] 桑腾蛟, 熊鳌魁. KVLCC2船型限制航道中斜航水动力及水动力导数研究[J]. 武汉理工大学学报(交通科学与工程版), 2018, 42(4): 647-650.
[2] 冀楠, 杨春, 钱志鹏, 等. 限制水域船-桨-舵一体舵力及脉动压力数值研究[J]. 水动力学研究与进展(A辑), 2021, 36(5): 677-685.
[3] 邵闯, 马宁, 顾解仲. 基于LQR限宽水域中KVLCC2操纵运动控制研究[J]. 舰船科学技术, 2017, 39(13): 73-77.
SHAO C, MA N, GU J Z. Control study ofKVLCC2 maneuvering in restricted water based on LOR[J]. Ship Science and Technology, 2017, 39(13): 73-77.
[4] 王桐, 马恺. 基于改进蚁群算法的受限水域无人船路径规划[J]. 舰船电子工程, 2023, 43(11): 120-124+128.
[5] 马忠鑫, 冀楠, 罗意等. 尺度效应对船舶在受限水域航行时的流场偏移影响研究[J]. 水动力学研究与进展A辑, 2022, 37(5): 691-697.
[6] 薛剑恩. 大型重载船舶在受限水域操纵中若干问题探讨[J]. 航海技术, 2011, (4): 5-7.
[7] 郑自强, 邹璐, 邹早建. 航道岸壁影响下的船-船干扰作用数值研究[J]. 水动力学研究与进展A辑, 2023, 38(2): 278-285.
[8] 宋深科, 夏立, 邹早建, 等. 大型邮轮与集装箱船水动力相互作用数值研究[J]. 上海交通大学学报, 2022, 56(7): 919-928.
[9] 王勇. 受限水域船舶安全航行要素分析——以“长赐轮”搁浅事件为例[J]. 世界海运, 2021, 44(10): 9-12.
[10] Chun-Ki Lee, Serng-Bae Moon, Jin-Seok Oh and Sang-Min Lee. Numerical analysis for hydrodynamic interaction effects between vessel and semi-circle bank wall[J]. International Journal of Naval Architecture and Ocean Engineering, 2015, (7): 691-698.
[11] Sangmin Lee, Chunbeom Hong. Study on the course stability of very large vessels in shallow water using CFD[J]. Ocean Engineering, 2017, 145: 395-405.