为了研究基于典型水下滑翔机平台探测轴频电场信号的可行性,首先对平台可能存在的电场干扰源进行分析,其次在实验室环境条件下对干扰源工作的背景电场噪声进行测量,而后基于海洋实验完成了144组剖面的背景电场噪声检测,最后对噪声进行了时域和频域特性分析。结果表明,受水下滑翔机内部设备的影响,在剖面运动的各阶段存在的噪声线谱特征不同,噪声量级范围在0.15~40 μV/m。因此,可通过分时工作的方式实现利用水下滑翔机探测轴频电场。
To investigate the feasibility of detecting ship's shaft-rate electric field signals based on a typical underwater glider platform, an analysis was conducted on potential sources of electric field interference on the platform. Subsequently, measurements were taken to determine the background electric field noise of the interference source under laboratory conditions, followed by completing 144 profiles for sea experiments to obtain further measurements of the electric field background. Finally, an analysis was performed on the characteristics of background electric field noise in both time and frequency domains. The findings indicate that the internal equipment of the underwater glider exerts an influence on the noise spectral characteristics, resulting in variations at different stages of profile movement. Additionally, the magnitude of noise ranges from 0.15μV/m to 40μV/m. Therefore, the underwater glider can be used to detect the axial frequency electric field through time-sharing.
2025,47(7): 99-104 收稿日期:2024-3-7
DOI:10.3404/j.issn.1672-7649.2025.07.019
分类号:TM937.4
基金项目:海军高层次科技创新人才工程人选自主科研项目(2022174020)
作者简介:文苗青(2001-),女,硕士研究生,研究方向为水下滑翔机电场特征分析及探测技术
参考文献:
[1] 张岳, 胡祥云, 韩波. 我国轴频电场研究现状[J]. 地球物理学进展, 2022, 37(3): 1342-1351.
ZHANG Y, HU X Y, HAN B. Research status of shaft-rate electric field in China[J]. Progress in Geophysics, 2022, 37(3): 1342-1351.
[2] 李松, 石敏, 栾经德, 等. 舰船轴频电场信号特征提取与检测方法[J]. 兵工学报, 2015, 36(S2): 220-224.
LI S, SHI M, LUAN J D, et al. The feature extraction and detection for shaft-rate electric field of a ship[J]. Acta Armamentarii, 2015, 36(S2): 220-224.
[3] 刁宏伟, 李宗吉, 王世哲, 等. 水下滑翔机研究现状及发展趋势[J]. 舰船科学技术, 2022, 44(6): 8-12.
DIAO H W, LI Z J, WANG S Z, et al. The research status and development trend of underwater glider[J]. Ship Science and Technology, 2022, 44(6): 8-12.
[4] SANFORD T B. Ocean E-Field measurements using gliders: [R]. Fort Belvoir, VA: Defense Technical Information Center, 2010.
[5] CLAUS B, WEITEMEYER K, KOWALCZYK P, et al. Autonomous underwater vehicle based electric and magnetic field measurements with. applications to geophysical surveying and subsea structure inspection[C]//2020 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV)(50043), 2020.
[6] 王超, 孙芹东, 张林, 等. 水下声学滑翔机海上目标探测试验与性能评估[J]. 信号处理, 2020, 36(12): 2043-2051.
WANG C, SUN Q D, ZHANG L, et al. Underwater acoustic glider target detection experiments and performance evaluation in the South China Sea[J]. Journal of Signal Processing, 2020, 36(12): 2043-2051.
[7] 王超, 孙芹东, 兰世泉, 等. 水下声学滑翔机目标探测性能南海试验分析[C]//2018年全国声学大会论文集 B水声物理, 中国声学学会, 2018.
[8] 孙芹东, 兰世泉, 王超, 等. 水下声学滑翔机研究进展及关键技术[J]. 水下无人系统学报, 2020, 28(1): 10-17.
SUN Q D, LAN S Q, WANG C, et al. Key technologies of underwater acoustic glider: a review[J]. Journal of Unmanned Undersea Systems, 2020, 28(1): 10-17.
[9] 屈新雨, 王征. 水下滑翔机研究应用现状及未来展望[J]. 船电技术, 2023, 43(11): 27-32.
QU X Y, WANG Z. Research and application status of underwater glider and future prospects[J]. Marine Electricity Technology, 2023, 43(11): 27-32.
[10] 孙云莲, 刘敦敏. 时频分析与小波变换及其应用[J]. 武汉大学学报(工学版), 2003, 36(2): 103-106.
SUN Y L, LIU D M. Time-frequency analysis and wavelet transform and their applications[J]. Engineering Journal of Wuhan University, 2003, 36(2): 103-106.