为了应对日益复杂的船舶发动机动力环境,满足发动机进气和气水分离要求,亟需解决大流通能力气水分离装置。本文设计的气水分离装置是在传统惯性级的基础上进行优化设计,通过改变惯性级结构并在前端增加防水炮级进一步提高防水炮、防浪以及防雨能力。本文首先采用Fluent软件对传统惯性级以及优化后的叶片进行了数值模拟计算,分析不同参数对总压损失与分离效率的影响,并据此开展惯性级的优化设计与性能预测;其次开展防水炮级的数值仿真,分析防水炮级的阻力损失与分离效率;最后通过试验测试大流通气水分离装置的总压损失与气水分离效果,在进气速度7 m/s条件下,装置的总压损失约603 Pa,装置后端无明显水滴。本文研究成果可为船舶动力系统进气装置的设计提供技术支持。
In order to cope with the increasingly complex Marine engine power environment and meet the requirements of engine intake gas and water separation,it is urgent to solve the problem of high flow energy water separation installation. The gas-water separation device designed in this paper is optimized on the basis of the traditional inertia stage. By changing the structure of the inertia stage and adding a waterproof gun stage at the front end,the waterproof gun,wave proof and rain proof ability are further improved. In this paper,Fluent software is used to simulate the traditional inertia stage and the optimized blade,and the influence of different parameters on the total pressure loss and separation efficiency is analyzed,and the optimal design and performance prediction of the inertia stage are carried out accordingly. Secondly,the numerical simulation of the waterproof gun stage is carried out,and the resistance loss and separation efficiency of the waterproof gun stage are analyzed. Finally,the total pressure loss and the effect of air-water separation of the flow ventilation water separation device are tested by experiments. Under the condition of 7 m/s intake speed,the total pressure loss of the device is about 603 Pa,and there is no obvious water drop at the back end of the device. The research results of this paper can provide technical support for the design of Marine power system intake device.
2025,47(7): 130-134 收稿日期:2024-4-19
DOI:10.3404/j.issn.1672-7649.2025.07.024
分类号:U664
作者简介:杜明(1974-),男,高级工程师,研究方向为船舶发动机进排气系统
参考文献:
[1] GILLANDT I, FRITSCHING U, RIEHLE C. Gas-particle flow in a comparison of measurements and simulations[J]. Forschung Im Ingenieurwesen-Engineering Research, 1996, 62(11-12): 315.
[2] ALAMU M B, AZZOPANDI B J. Wave and drop periodicity in transient annular flow[J]. Nuclear Engineering & Design, 2011, 241(12): 5079-5092.
[3] CHANG W, LI X, HAO W, et al. Experimental study on single-phase heat transfer of natural circulation in circular pipe under rolling motion condition[J]. Nuclear Engineering & Design, 2014, 273(7): 497-504.
[4] LI H, ANGLART H. CFD model of diabatic annular two-phase flow using the Eulerian–Lagrangian approach [J]. Annals of Nuclear Energy, 2015, 77: 415-424.
[5] BO W A, Cl B, Rt A. Characteristics of liquid film rupture at wave plate corner: A short communication - ScienceDirect [J]. Annals of Nuclear Energy, 2021,151:107880.
[6] 韩彭锐, 李翔宇, 王艳华, 等. 船舶燃气轮机气水分离器结构设计标准研究[J]. 热能动力工程, 2022, 37(12): 124-131.
[7] 滕建鑫. 惯性分离装置的性能分析及结构优化研究[D]. 哈尔滨:哈尔滨工程大学, 2019.
[8] 魏乾星. 舰船用燃气轮机进气滤清器性能数值研究[D]. 大连:大连海事大学, 2012.
[9] 李永曦. 船用气水分离器性能研究[D]. 哈尔滨:哈尔滨工程大学, 2021.