为改善舰船电子机箱抗振动冲击性能,采用钢丝绳隔振器进行防护设计,安装方式为壁挂式。基于隔振器动态特性理论分析,对其进行振动冲击测试,得到隔振器固有频率、振动传递率、冲击隔离率等特性参数。结果表明,隔振器Z向、X向最大振动传递率小于3,20~60 Hz隔振区振动传递率分别小于0.5和0.71,Y向最大振动传递率大于3,42~60 Hz隔振区振动传递率大于0.67,Z向、X向隔振效果较好,Y向隔振效果较差。轻量级冲击机受到单向冲击激励时,不同方向上都有冲击响应,冲击波引起隔振器谐振,隔振器通过衰减4000~8000 Hz高频冲击能量来实现冲击隔离,冲击隔离率大于93.7%,缓冲性能优异。研究成果可为电子设备舰船环境振动冲击防护设计提供技术支撑。
In order to improve anti-vibration and anti-shock performance of ship electronic chassis, wire rope isolators were used for protective design, and the installation method was wall-mounted. Based on theoretical analysis of dynamic characteristics, vibration and shock test was carried out, and the characteristic parameters of isolators such as natural frequency, vibration transmissibility and shock isolation rate were obtained. The results show that the maximum vibration transmissibility in Z-direction and X-direction is less than 3, and the vibration transmissibility in the 20 to 60 Hz isolation area is less than 0.5 and 0.71, respectively. The maximum vibration transmissibility in Y-direction is greater than 3, and the vibration transmissibility in the 42 to 60 Hz isolation area is greater than 0.67. The vibration isolation efficiency in Z-direction and X-direction is good, and the vibration isolation efficiency in Y-direction is poor. When the lightweight shock machine is excited by unidirectional shock, there is a shock response in different directions, and the shock wave causes the isolators resonance. The isolators realize shock isolation by attenuating the high-frequency shock energy of 4000 to 8000 Hz. The shock isolation rate is greater than 93.7%, and buffer effect is excellent. The research provides technical support for protective design of electronic equipments under ship environment.
2025,47(7): 135-140 收稿日期:2024-6-11
DOI:10.3404/j.issn.1672-7649.2025.07.025
分类号:U661.44
基金项目:装备预研应用创新项目(62602010331)
作者简介:朱曾辉(1990-),男,硕士,高级工程师,研究方向为雷达减振降噪抗冲击设计
参考文献:
[1] 周心桃, 吴国民, 李德聪. 舰船抗爆抗冲击技术体系探析[J]. 中国舰船研究, 2023, 18(2): 127-139.
[2] 唐怀诚, 杨旖旎, 刘烨, 等. 船舶机械减隔振技术与计算方法研究综述[J]. 应用数学和力学, 2023, 44(12): 1413-1427.
[3] 黄映云, 秦俊明, 吴善跃, 等. 钢丝绳隔振器冲击特性试验研究[J]. 海军工程大学学报, 2007, 19(1): 23-26.
[4] 高浩鹏, 张姝红, 冯麟涵. 水下爆炸作用下高速摄像机抗冲隔振系统设计与动态特性分析[J]. 振动与冲击, 2017, 36(9): 209-213.
[5] 张春辉, 卢凯田, 张磊, 等. 新型钢丝绳隔振器力学性能试验与仿真研究[J]. 振动与冲击, 2021, 40(16): 213-219.
[6] 马召召, 周瑞平, 杨庆超, 等. 含电磁分流阻尼双层准零刚度隔振系统的动力学特性分析[J]. 机械工程学报, 2023, 59: 1-12.
[7] 孙孟, 邱昌林, 张诗洋, 等. 泵设备模块化成组浮筏系统隔振性能研究[J]. 舰船科学技术, 2023, 45(3): 32-38.
SUN M, QIU C L, ZHANG S Y, et al. Research on vibration isolation performance of modular floating raft system with pump equipment[J]. Ship Science and Technology, 2023, 45(3): 32-38.
[8] 李剑钊, 申海川, 宋禹林, 等. 基座刚度对设备隔振器限位引起的二次冲击影响特性研究[J]. 振动与冲击, 2020, 39(6): 125-131.
[9] 楼京俊, 杨庆超, 柴凯, 等. 装配式橡胶隔振器模型修正与静态特性研究[J]. 舰船科学技术, 2023, 45(21): 44-49.
LOU J J, YANG Q C, CHAI K, et al. Research on model modification and static characteristics of assembled rubber isolator[J]. Ship Science and Technology, 2023, 45(21): 44-49.
[10] 李慧, 殷学文, 吴文伟, 等. 海洋平台主机舱振动建模仿真分析及试验研究[J]. 舰船科学技术, 2024, 46(5): 74-79.
LI H, YIN X W, WU W W, et al. Simulation modeling and experimental analysis on vibration of offshore platform engine cabin[J]. Ship Science and Technology, 2024, 46(5): 74-79.
[11] WANG Q, ZHOU J X, XU D L, et al. Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport[J]. Mechanical Systems and Signal Processing, 2020, 139: 106633.
[12] S RASHIDI, S ZIAEI-RAD. Experimental and numerical vibration analysis of wire rope isolators under quasi-static and dynamic loadings[J]. Engineering Structures, 2017, 148: 328–339.
[13] 田浩男, 单光坤, 闫明, 等. 不同结构参数的钢丝绳隔振器抗冲击性能研究[J]. 振动、测试与诊断, 2022, 42(1): 117–123.