舰船排污环境复杂多变,排污状态具有较高时变性,以应对高时变性的舰船排污状态,达到全方位船舶排污实时追踪效果,研究基于AIS无线网络的舰船排污智能监测系统实时获取舰船航速、排污流量、排放含油污水的油分浓度等数据,经由AIS无线网络传送至AIS中心,对所接收数据实施高频率更新后,通过调取并转换数据库内的各种数据,获得舰船排放污水油分浓度值与瞬间排放率的监测结果,并在二者超出上限值时发出声光预警,同时控制舰船的排污阀门关闭。结果显示,该系统可实时监测出舰船航行中排放污水的油分浓度值与瞬间排放率是否存在超标情况,并在超标时准确发出相关预警信息,能够应对舰船排污状态的高时变性,监测性能稳定可靠。
The pollution environment of ships is complex and variable, and the pollution status has high temporal variability. In order to cope with the high temporal variability of ship pollution status and achieve real-time tracking of ship pollution in all directions, a ship pollution intelligent monitoring system based on AIS wireless network is studied to obtain real-time data such as ship speed, pollution flow rate, and oil concentration of discharged oily sewage. The data is transmitted to the AIS center through AIS wireless network, and after high-frequency updates of the received data, various data in the database are retrieved and converted to obtain monitoring results of ship sewage oil concentration and instantaneous discharge rate. When both exceed the upper limit value, an audible and visual warning is issued, and the ship's pollution valve is controlled to close. The results show that the system can monitor in real time whether the oil concentration value and instantaneous discharge rate of sewage discharged during ship navigation exceed the standard, and accurately issue relevant warning information when exceeding the standard. It can cope with the high variability of ship sewage discharge status and has stable and reliable monitoring performance.
2025,47(7): 169-173 收稿日期:2025-2-18
DOI:10.3404/j.issn.1672-7649.2025.07.031
分类号:TP934
基金项目:山西省高等学校科技创新计划项目(2023L286)
作者简介:郭文俊(1986-),男,硕士,讲师,研究方向为物联网技术及网络信息安全
参考文献:
[1] 张绍萍. 现代船舶舱底污水排放及处理系统设计[J]. 船舶工程, 2022, 44(12): 36-42.
ZHANG S P. Design of modern ship bilge sewerage discharge and treatment system[J]. Ship Engineering, 2022, 44(12): 36-42.
[2] 王在忠, 孙润哲. 油船机舱污油水排入货油区污油水舱的要求[J]. 船舶工程, 2022, 44(S1): 529-533.
WANG Z Z, SUN R Z. Requirements for discharge of dirty oil water from engine room of oil tanker into dirty oil water tank of cargo oil area[J]. Ship Engineering, 2022, 44(S1): 529-533.
[3] 李欣, 高山林, 王涵, 等. 基于LoRa技术的智能监测系统设计与实现[J]. 海军工程大学学报, 2024, 36(1): 15-21+28.
LI X, GAO S L, WANG H, et al. Design and implementation of intelligent monitoring system based on LoRa technology[J]. Journal of Naval University of Engineering, 2024, 36(1): 15-21+28.
[4] 王征, 彭传圣, 陈俊峰, 等. 船舶氮氧化物排放和燃油合规性监测监管研究[J]. 环境工程, 2023, 41(S2): 800-806.
WANG Z, PENG C S, CHEN J F, et al. Study on ship nitrogen oxide emissions and fuel compliance monitoring and regulation[J]. Environmental Engineering, 2023, 41(S2): 800-806.
[5] 胡春桥, 罗宇涵, 宋润泽, 等. 针对船舶排放污染物分布监测的地基快速IDOAS技术研究[J]. 光谱学与光谱分析, 2024, 44(6): 1537-1545.
HU C Q, LUO Y H, SONG R Z, et al. Study on ground-based fast IDOAS for monitoring the distribution of pollutants discharged from ship[J]. Spectroscopy and Spectral Analysis, 2024, 44(6): 1537-1545.
[6] WANG Y K, LIU J X, LIU R W, et al. Data-driven methods for detection of abnormal ship behavior: Progress and trends[J]. Ocean Engineering, 2023, 271(3): 1.1-1.17.
[7] 胡勤友, 张蓓, 杨春, 等. 大量海上AIS移动基站对全球船舶监控效果的仿真及可视化[J]. 上海海事大学学报, 2022, 43(2): 14-18.
HU Q Y, ZHANG B, YANG C, et al. Simulation and visualization of global ship monitoring effect by a large number of offshore AIS mobile base stations[J]. Journal of Shanghai Maritime University, 2022, 43(2): 14-18.