为研究工程船机舱在多海域作业下的热环境,本文结合CFD(Computational Fluid Dynamics)方法与数值传热学对工程船舶机舱的通风系统进行数值仿真。分别选取热带海域与正常海域下,工程船作业时机舱内典型截面的温度场进行分析研究,仿真结果表明:通风系统在正常航行时效果良好,机舱工作区域温度正常;在热带海域作业时,冷风机开启后的机舱区域仍有过热风险,需通过优化甲板栅格开口、机舱通风管道风口尺寸等手段改善整体气流组织;主要热源附近增设冷风机,可引导热量走向改善机组工作环境;低流通效率的空间设置轴流风机可调整气流组织,避免流通死角。优化后的机舱通风方案整体温度降低约2.5℃,符合正常作业需求。
In order to study the thermal environment of engineering ship engine room under multi-sea operation, the Computational fluid dynamics (CFD) method and numerical heat transfer method are combined to simulate the ventilation system of the engine room of an engineering ship in this paper. The typical section of temperature field in the engine room of engineering ship were respectively selected for analysis and research during operation in tropical sea area and normal sea area. The simulation results show that the ventilation system has good effect during normal navigation, and the temperature in the working area of the engine room is normal. When operating in tropical waters, there is still a risk of overheating in the engine room area after the chiller is opened. Therefore, the overall air flow organization should be improved by optimizing the deck grid openings and the size of the engine room ventilation ducts. Adding a cold fan near the main heat source can guide the heat to improve the working environment of the unit. The axial fan in the space with low flow efficiency can adjust the airflow organization to avoid dead flow angles. The overall temperature of the optimized cabin ventilation scheme is reduced by about 2.5℃, which meets the requirements of normal operation.
2025,47(9): 72-77 收稿日期:2024-7-21
DOI:10.3404/j.issn.1672-7649.2025.09.013
分类号:U664
作者简介:杨凯博(1999-),男,硕士,助理工程师,研究方向为船舶动力装置、海洋可再生能源
参考文献:
[1] 李越曌, 郑卓, 吴拓, 等. 工业4.0时代智能船舶发展趋势与挑战[J]. 船舶工程, 2023, 45(S1): 224-229.
[2] 许维明, 瞿荣泽, 薛国良, 等. 智能船舶系统研究现状及发展趋势[J]. 船舶, 2023, 34(4): 46-55.
[3] 于兴学, 孙培廷, 夏治发, 等. 船舶机舱的自然通风[J]. 大连海事大学学报, 2004, 30(2): 23-25.
[4] 曾宏强, 周新. 船舶机舱通风系统设计方法对比分析研究[J]. 中国造船, 2016, 57(2): 201-205.
[5] RENEKE P A, JONES W W, PEATROSS M J, et al. A comparison of CFAST predictions to USCG real-scale fire tests[J]. Journal of Fire Protection Engineering. 2001, 11(1): 43-68.
[6] 江宇, 宋福源, 李彦军, 等. 船舶机舱通风数值模拟分析[J]. 舰船科学技术, 2012, 34(8): 52-55, 59.
JIANG Y, SONG F Y, LI Y J, et al. Numerical simulation of ventilation and analysis in ship engine room[J]. Ship Science And Technology, 2012, 34(8): 52-55, 59.
[7] 刘倩, 蔡凯华, 彭秀清, 等. 2000t海上风电安装平台机舱通风系统布置优化[J]. 造船技术, 2023, 51(6): 61-65, 70.
[8] 蒋仕伟, 徐筱欣. 基于CFD的闭式机舱通风系统三维数值模拟[J]. 中国舰船研究, 2013(2): 80-83,89.
[9] 谷家扬, 谢达阳, 王丽元, 等. 引入射流通风系统的船舶机舱CFD数值模拟[J]. 舰船科学技术, 2023, 45(10): 46-50.
GU J Y, XIE D Y, WANG L Y, et al. CFD numerical simulation of ship engine room with jet ventilation system[J]. Ship Science and Technology, 2023, 45(10): 46-50.
[10] 梁彦超, 徐筱欣. 基于PROE的船舶机舱三维布置设计研究[J]. 船舶工程, 2011, 33(3): 69-71.
[11] 杨勇, 张新桥, 陈艺琳, 等. 机舱无风管诱导通风系统优化设计[J]. 船舶工程, 2021, 43(S1): 255-258.
[12] 王福军. 计算流体动力学分析: CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004.
[13] 陶文铨. 数值传热学第二版[M]. 西安: 西安交通大学出版社, 2001.