极区船舶与海冰发生挤压碰撞时常伴随着极地低温,考虑极地低温与冰载荷联合作用时对船舶舷侧极限承载能力的影响。首先,采用VOF(Volume of Fluid)模型研究在仅受环境温度影响下船舶舷侧垂向温度分布,水线至二甲板处受环境温度与海水温度的影响产生明显的温度梯度,以此时的温度应力为基础,在船舶舷侧上施加冰载荷,细化冰载荷加载区域网格,通过两倍斜率法确定舷侧的极限承载能力,环境温度越低,其极限承载能力越小。改变冰载荷施加位置,对比有无强构件支撑时其极限承载能力的大小,结果表明强构件支撑能有效提高船体的极限承载能力。研究成果可为极区船舶结构强度校核提供参考。
The compression collision between polar ships and sea ice is often accompanied by polar low temperatures. This article considers the combined effect of polar low temperatures and ice loads on the ultimate load-carrying capacity of ship hulls. Firstly, the VOF(Volume of Fluid) model is used to study the vertical temperature distribution on the ship's side under the influence of only ambient temperature. A significant temperature gradient is generated from the waterline to the second deck due to the influence of ambient temperature and seawater temperature. The temperature stress generated at this time is compressive stress. Based on this temperature stress, ice load is applied on the ship's side, and the grid of the ice load loading area is refined. The ultimate bearing capacity of the side is determined by the double slope method. The lower the ambient temperature, the smaller the ultimate bearing capacity. By changing the location of ice load application and comparing the ultimate bearing capacity with and without strong component support, the results show that strong component support can effectively improve the ultimate bearing capacity of the ship. The research results can provide reference for the strength verification of ship structures in polar regions.
2025,47(10): 15-21 收稿日期:2024-8-17
DOI:10.3404/j.issn.1672-7649.2025.10.003
分类号:U663.3
作者简介:张健(1977-),男,博士,教授,研究方向为船舶与海洋工程结构强度评估
参考文献:
[1] TAKASHI Y, KUMIKO T. Rapid change of the arctic climate system and its global influences - overview of grene arctic climate change research project (2011–2016)[J]. Polar Science, 2020, 25: 100548.
[2] MARCIANESI F, AULICINO G A, WADHAMS P. Arctic sea ice and snow cover albedo variability and trends during the last three decades[J]. Polar Science, 2021, 28: 100617.
[3] JASPER N H. Temperature-induced stresses in beams and ships[J]. Journal of the American Society of Naval Engineers, 1956, 68(3): 485-497.
[4] 杜忠仁. 船体纵向构件的热应力计算与比较衡准[J]. 中国造船, 1991(2): 58-67.
DU Z R. Calculation method and comparative evaluation of the thermal stress in longitudinal hull structural components[J]. Shipbuilding of China, 1991(2): 58-67.
[5] 滕晓青, 顾永宁. 单壳双底货船舱段结构瞬态温度场和热应力[J]. 船舶力学, 2003(2): 51-60.
TENG X Q, GU Y N. Transit temperature field and thermal stresses of hold structures of single side shell and double bottom vessels[J]. Journal of Ship Mechanics, 2003(2): 51-60.
[6] 程玉莹. 极地环境载荷作用下船舶起重机结构设计与分析[D]. 大连: 大连海事大学, 2022.
[7] MOATSOS I, DAS P K. Modelling the effect of extreme diurnal temperature changes on ship structures for the assessment of structural reliability using load combination techniques[C]//14th International Offshore and Polar Engineering Conference, 2024.
[8] MIHKEL K. Load carrying capacity of ice-strengthened frames under idealized ice load and boundary conditions[J]. Marine Structures, 2018, 58: 18-30.
[9] 陆锁芳. 冰载下冰带区域板格强度快速评估方法研究[D]. 上海: 上海交通大学, 2019.
[10] 曾佳, 王燕舞, 郑文青, 等. 极区船舶冰带构件极限载荷评估[J]. 船舶工程, 2019, 41(7): 5-11.
ZENG J, WANG Y W, ZHENG W Q, et al. Limit load assessment for ice belt structure of polar ships[J]. Ship Engineering, 2019, 41(7): 5-11.
[11] 贺福, 刘晖, 刘俊. 冰载荷空间分布对舷侧结构响应的影响[J]. 船舶工程, 2021, 43(7): 13-17+135.
HE F, LIU H, LIU J. Influence of ice load spatial distribution on the response of side structure[J]. Ship Engineering, 2021, 43(7): 13-17+135.
[12] 中国船级社. 钢质海船入级规范[S]. 2023.
[13] IACS. Requirements Concerning Polar Class [S]. 2011.
[14] TRAFI. Finnish-Swedish Ice Class Rules [S]. 2010.
[15] 那城炜. 东北寒区碾压混凝土坝温度应力仿真研究[D]. 沈阳: 沈阳农业大学, 2020.
[16] 李继中. 考虑低温影响的LNG船极限强度与剩余极限强度研究[D]. 上海: 上海交通大学, 2016.
[17] 陈章兰, 熊云峰, 蔡振雄. EH36船用钢焊接角变形有限元分析[J]. 船舶工程, 2007(6): 62-64.
CHEN Z L, XIONG Y F, CAI Z X. FEA of welding angular distortion of EH36 marine steel[J]. Ship Engineering, 2007(6): 62-64.
[18] KE W, LI W, YONG Z L, et al. Experimental study on low temperature fatigue performance of polar icebreaking ship steel[J]. Ocean Engineering, 2020, 216: 107789.
[19] 周塞北. 冰区船舶起重机械结构强度分析[D]. 镇江: 江苏科技大学, 2017.
[20] 孙雨薇. 低温下船体结构反复碰撞损伤研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.