针对细长杆件海上吊装转运过程中作业效率低、风险高以及作业强度大等问题,本文将细长杆件吊装过程分为单点起吊阶段和多柔索约束阶段,并分别对2个阶段进行动力学建模。采用Matlab/Simulink对细长杆件从水平放置至吊离地面阶段的动力学特性和多柔索约束阶段的减摇效果进行仿真分析,通过硬件实验验证了单点起吊阶段和多柔索约束阶段动力学模型的准确性,所提出的多柔索约束策略对吊钩和细长杆件吊重的平均减摇效果达75%,研究成果可为海上细长杆件吊装过程的优化以及多柔索减摇策略提供一定的理论基础。
To address the issues of low efficiency, high risk, and high operational intensity in the offshore lifting and transfer of slender-beam payload, this paper divides the lifting process into two stages: the single-point lifting stage and the multi-tagline constrained stage. Dynamic models are developed for each stage. Matlab/Simulink is used to simulate the dynamic characteristics of the slender-beam payload during the transition from horizontal placement to lifting off the ground, and to analyze the anti-swing performance during the multi-tagline constrained stage. Hardware experiments validate the accuracy of the dynamic models for both stages. The proposed multi-tagline constraint strategy achieves an average anti-swing effect of 75% for both the hook and the slender-beam payload. The research findings provide a theoretical foundation for optimizing the offshore lifting process of slender-beam payload and improving anti-swing strategies using multi-tagline.
2025,47(10): 41-46 收稿日期:2024-6-26
DOI:10.3404/j.issn.1672-7649.2025.10.007
分类号:U653.921
基金项目:国家自然科学基金青年项目(52101396)
作者简介:张基明(1986-),男,硕士,高级工程师,研究方向为机械电子、自动控制
参考文献:
[1] 毛锡锋. 船用起重机机械的减摇控制方法[J]. 舰船科学技术, 2018, 40(6): 37-39.
[2] 张强, 胡荣芳, 黄龙. 基于ADAMS的舰载补给起重机摇摆仿真及减摇措施分析[J]. 舰船科学技术, 2020, 42(5): 164-169.
[3] 邱泽昊, 孙宁, 刘卓清, 等. 双桅杆式起重机的时变输入整形控制方法[J]. 控制理论与应用, 2023, 40(8): 1509-1518.
[4] GARRIDO S, ABDERRAHIM M, GIMENEZ A, et al. Anti-swinging input shaping control of an automatic construction crane[J]. IEEE Transactions on Automation Science and Engineering, 2008, 5(3): 549-557.
[5] BOSCHETTI G, CARACCIOLO R, RICHIEDEI D, et al. A non-time based controller for load swing damping and path-tracking in robotic cranes[J]. Journal of Intelligent & Robotic Systems, 2014, 76: 201-217.
[6] MOUSTAFA K A F, EBEID A M. Nonlinear modeling and control of overhead crane load sway[J]. Journal of Dynamic Systems, Measurement, and Control, 1988, 110(3): 266-271.
[7] PISANO A, SCODINA S, USAI E. Load swing suppression in The 3-Dimensional overhead crane via Second-Order Sliding-Modes[C]//International Workshop on Variable Structure Systems, Mexico City, Mexico, IEEE, 2010.
[8] CHANG C Y. Adaptive fuzzy controller of the overhead cranes with nonlinear disturbance[J]. IEEE Transactions on Industrial Informatics, 2007, 3(2): 164-172.
[9] O'CONNOR W, HABIBI H. Gantry crane control of a double-pendulum, distributed-mass load, using mechanical wave concepts[J]. Mechanical Sciences, 2013, 4(2): 251-261.
[10] WANG S, FERRI A, SINGHOSE W, et al. Slipping dynamics of slender-beam payloads during lay-Down operations[J]. Journal of Dynamic Systems Measurement & Control, 2018, 140(8).
[11] MANNING R, CLEMENT J, KIM D, et al. Dynamics and control of bridge cranes transporting distributed-mass payloads[J]. Journal of Dynamic Systems, Measurement, and Control, 2010, 132(1): 91-93.
[12] WU Y, SUN N, CHEN H, et al. New adaptive dynamic output feedback control of double-pendulum ship-mounted cranes with accurate gravitational compensation and constrained inputs[J]. IEEE Transactions on Industrial Electronics, 2021, 69(9): 9196-9205.
[13] 孙茂凱, 王生海, 韩广冬, 等. 基于柔索并联的细长杆件吊装减摇系统动力学分析与试验研究[J]. 振动与冲击, 2023, 42(18): 286-294.
[14] YUAN G, HUNT B R, GREBOGI C, et al. Design and control of shipboard cranes[C]//roceedings of ASME Design Engineering Technical Conferences. Sacramento, USA, 1997.
[15] PARKER G, GRAZIANO M, LEBAN F, et al. Reducing crane payload swing using a rider block tagline control system[C]//roceedings of OCEANS 2007 - Europe. Aberdeen, 2007.
[16] 王建立, 刘可心, 王生海, 等. 船用起重机双摆吊重减摆动力学分析与实验[J]. 华中科技大学学报(自然科学版), 2024, 52(1): 72-77.
[17] 王生海. 船用起重机吊重系统动力学分析与防摆控制研究[D]. 大连: 大连海事大学, 2018.