本文研究复合型变厚度消波阻尼板的振动特性以控制基座结构振动。在完成数值仿真结果的正确性验证后,以基座面板的振动谱峰为控制目标,通过调节材料及结构参数设计单片及复合型变厚度消波阻尼板的固有频率,将变厚度板固连到目标基座面板上振动幅值最大的位置,实现与振源的耦合共振,从而吸收并耗散弯曲振动能量,为控制计算规模,采用面单元代替体单元,并用函数为变厚度板赋板厚以保证板厚的连续变化。研究结果表明,采用上述方法构建数值仿真模型能够大幅提高计算效率,在5~600 Hz的频率范围内,采用上述基于振动谱峰构造的复合型变厚度消波阻尼板以及连接方式能够明显降低基座面板在谱峰处的振动幅值,同时不影响目标结构的强度及重量。
Study the vibration characteristics of the composite variable-thickness wave absorbing damping plate to control the vibration of the base structure. After the correctness of the numerical simulation results has been verified, the vibration spectrum peaks of the base panel are taken as the control target, so that the intrinsic frequencies of the monolithic and composite variable-thickness wave absorbing damping plates can be designed by adjusting the material and structural parameters. The variable-thickness plate is fixed to the position with the largest vibration amplitude on the target base panel to realize the coupling resonance with the vibration source, thus absorbing and dissipating the bending vibration energy. In order to control the calculation scale, the area element is used instead of the volume element, and the thickness of variable-thickness plate is assigned by the function to ensure the continuous change of the plate thickness, and the results of the study show that: the numerical simulation model constructed by the above method can greatly improve the calculation efficiency. In the frequency range of 5~600 Hz, the use of the above composite variable-thickness wave absorbing damping plate (based on the vibration spectrum peak structure) and the connection method can significantly reduce the vibration amplitude of the base panel at the spectrum peak without affecting the strength and weight of the target structure.
2025,47(10): 52-57 收稿日期:2024-8-5
DOI:10.3404/j.issn.1672-7649.2025.10.009
分类号:U661.44
基金项目:国家自然科学基金资助项目(52071334);海军工程大学自主研发科研项目(2025505050)
作者简介:周亿(2001-),男,硕士研究生,研究方向为舰船隐身技术
参考文献:
[1] GAUTIER F, KRYLOV V V. Special issue: recent advances in acoustic black hole research[J]. Journal of Sound and Vibration, 2020, 476(2): 115335.
[2] LI M, LI C. Numerical and experimental benchmark solution vibration and sound radiation of an acoustic black hole plate[J]. Applied Acoustics, 2020, 163: 107223.
[3] GUASCHO, SNCHEZ-MARTNP, GHILARDID. Application of the transfer matrix approximation for wave propagation in a Meta fluid representing an acoustic black hole duct termination[J]. Applied Mathematical Modelling, 2020, 77: 1881-1893.
[4] 刘尊程, 温华兵, 李志远, 等. 声学黑洞浮筏系统的隔振性能分析[C]//第十七届船舶水下噪声学术讨论会, 衢州, 2019.
[5] 何璞, 王小东, 季宏丽. 基于声学黑洞的盒式结构全频带振动控制[J]. 航空学报, 2020, 41(4): 134-143.
[6] 赵业楠, 杨德庆, 王博涵. 声学黑洞俘能器在气垫船舱室噪声控制中的应用研究[J]. 中国造船, 2020, 61(3): 58-67.
[7] 赵楠, 王禹, 陈林, 等. 分布式声学黑洞浮筏系统隔振性能研究[J]. 振动与冲击, 2022, 41(13): 75-80.
[8] 李熙. 一维声学黑洞结构力学性能研究[D]. 天津: 天津大学, 2018.
[9] 罗静. 基于激光超声技术的一维声学黑洞结构研究[D]. 南京: 南京航空航天大学, 2017.
[10] ZHAO L X. Low-frequency vibration reduction using a sandwich plate with periodically embedded acoustic black holes[J]. Journal of Sound and Vibration, 2019, 441: 165-171.
[11] J. B. F F S S C. Passive control of vibration and sound transmission for vehicle structures via embedded Acoustic Black Holes[J]. Inter noise and Noise Congress and Conference Proceedings, 2013, 246(1): 176-184.
[12] KRYLOV V V, SHUVALOV A L. Propagation of localized flexural vibrations along plate edges described by a power law[J]. Institute of Acoustics, 2000, 22: 263-270.
[13] KRYLOV V V. Localized acoustic modes of a quadratically-shaped solid wedge[J]. Moscow University Physics Bulletin, 1990, 45(6): 65-69.
[14] A P F , C S C , FABIO S . A normalized wave number variation parameter for acoustic black hole design [J]. The Journal of the Acoustical Society of America, 2014, 136(2): 148-152.
[15] CONLON S C , FAHNLINE J B , Semperlotti F. Numerical analysis of the vibroacoustic properties of plates with embedded grids of acoustic black holes [J]. The Journal of the Acoustical Society of America, 2015, 137(1): 447-457.
[16] 贾秀娴, 杜宇. 声黑洞理论应用于板类结构的轻量化减振分析[J]. 振动工程学报, 2018, 31(3): 434-440.
[17] 王宁. 附加式声学黑洞的设计及振动抑制研究[D]. 南京: 南京航空航天大学, 2023.