为验证现有船舶动力学数值仿真模拟对船舶运动预测的准确性。以KVLCC2油轮回转运动和S175集装箱船在规则波中的摇摆运动为对象,采用控制体积法求解湍流模型封闭的非定常雷诺方程,并结合k-ω SST模型和自由面VOF方法,求解了6自由度的船舶运动动力学方程组。分析数值模拟结果发现,在不同的波浪航向角下,船舶进入规则波的回转和摇摆运动与试验数据具有良好的一致性。结果表明,现有数值方法能够满足工程目的的精度预测船舶动态参数,可作为船舶方案设计阶段操纵性预报的主要手段和重要补充。
To verify the accuracy of existing numerical simulations of ship dynamics in predicting ship motion. Taking the turning motion of KVLCC2 oil tanker and the swaying motion of S175 container ship in regular waves as objects, the control volume method was used to solve the unsteady Reynolds equation with a closed turbulence model, and the k - ω SST model and free surface VOF method were combined to solve the 6-degree-of-freedom ship motion dynamics equation system. The analysis of numerical simulation results shows that under different wave heading angles, the ship's turning and swaying movements in regular waves have good consistency with experimental data. The results indicate that existing numerical methods can accurately predict ship dynamic parameters for engineering purposes, and can serve as the main means and important supplement for maneuverability prediction in the ship design stage.
2025,47(10): 58-63 收稿日期:2024-8-3
DOI:10.3404/j.issn.1672-7649.2025.10.010
分类号:U661.33
基金项目:国家重点研发计划资助项目(2020YFC1508405);中国交通教育研究会教育科学研究课题(JT2022YB101)
作者简介:闫佳兵(1985-),男,副教授,研究方向为船舶水动力与操纵性
参考文献:
[1] 牙政谋. 大型船舶浅水航行安全研究[J]. 中国水运, 2022(2): 117-119.
YA Z M. Research on safety of shallow water navigation for large ships[J]. China Water Transport, 2022(2): 117-119.
[2] 张星. 大型集装箱船风浪作用下的操纵性仿真[J]. 舰船科学技术, 2022, (44)23: 149–151.
ZHANG X. Simulation of maneuverability of large container ships under wind and waves[J]. Ship Science and Technology, 2022, (44)23: 149–151.
[3] 张昊翔. 浅水对港内船舶操纵的影响研究[J]. 中国水运, 2023, 23: 20-23.
ZHANG H X. Study on the Impact of Shallow Water on Ship Maneuvering in Ports[J]. China Water Transport, 2023, 23: 20-23.
[4] 李永成, 李迎华, 潘子英, 等. 浅水效应下智能技术试验船回转操纵性数值模拟[J]. 舰船科学技术, 2024, 46(3): 46-49.
LI Y C, LI Y H, PAN Z Y, et al. Numerical simulation of turning maneuverability of intelligent technology test ship under shallow water effect[J]. Ship Science and Technology, 2024, 46(3): 46-49.
[5] IMO. Explanatory notes to the standards for ship man-oeuvrability: MSC/Circ. 1053[S]. London, UK: IMO, 2002.
[6] 郑茂, 丁世淦, 兰加芬. 基于数值计算的非常规船型操纵运动建模[J/OL]. 上海交通大学学报, 1-15[2024-07-08].
ZHENG M, DING S G, LAN J F. Modeling of unconventional ship maneuvering motion based on numerical calculation [J/OL]. Journal of Shanghai Jiao Tong University, 1-15[2024-07-08].
[7] LI S , LIU C , CHU X , et al. Ship maneuverability modeling and numerical prediction using CFD with body force propeller[J] . Ocean Engineering, 2022, 264: 112454.
[8] 孙寒冰, 肖佳峰, 王伟, 等. 船舶操纵水动力导数的数值求解及敏感度分析[J]. 中国舰船研究, 2022, 17(1): 60-70.
SUN H B, XIAO J F, WANG W, et al. Numerical solution and sensitivity analysis of hydrodynamic derivatives in ship maneuvering[J]. China Shipbuilding Research, 2022, 17(1): 60-70.
[9] 王建华, 万德成. 船舶操纵运动CFD数值模拟研究进展[J]. 哈尔滨工程大学学报, 2018, 39(5): 813–824.
WANG J H, WAN D C. Research progress on CFD numerical simulation of ship maneuvering motion [J]. Journal of Harbin Engineering University, 2018, 39 (5): 813–824
[10] WANG J, ZOU L, WAN D. Numerical simulations of zigzag maneuver of free running ship in waves by RANS-Overset grid method[J] . Ocean Engineering, 2018, 162: 55–79.
[11] MOFIDI A, MARTIN E J, CARRICA M P. Propeller/rudder interaction with direct and coupled CFD/ potential flow propeller approaches, and application to a zigzag manoeuvre[J]. Ship Technology Research, 2018, 65(1): 10-31.
[12] JIN Y T, DUFFY J, CHAI S H, et al. DTMB 5415M dynamic manoeuvres with URANS computation using body-force and discretised propeller models[J]. Ocean Engineering, 2019, 182: 305-317.
[13] 王建华, 万德成. CFD数值模拟船舶在波浪中的回转操纵运动[J]. 中国舰船研究, 2019, 14(1): 1-8.
WANG J H, WAN D C. CFD numerical simulation of ship turning and maneuvering motion in waves[J]. China Shipbuilding Research, 2019, 14(1): 1-8.
[14] BALAGOPALAN A, TIWARI K, RAMEESHA T V, et al. Manoeuvring prediction of a container ship using the numerical PMM test and experimental validation using the free running model test[J]. Ships and Offshore Structures, 2020, 15(8): 852–865.
[15] LIU Y , ZOU L , ZOU Z J, et al. Predictions of ship maneuverability based on virtual captive mode tests[J]. Engineering Applications of Computational Fluid Mechanics, 2018, 12(1): 334–353.
[16] ZHANG C L, LIU X J, WAN D C, et al. Experimental and numerical investigations of advancing speed effects on hydrodynamic derivatives in MMG model. Part I: XVV, YV, NV[J]. Ocean Engineering, 2019, 179: 67-75.
[17] KIM H, AKIMOTO H, ISLAM H. Estimation of the hydrodynamic derivatives by RANS simulation of planar motion mechanism test[J]. Ocean Engineering, 2015, 108: 129-139.
[18] MOERI Tanker KVLCC2. Workshop on verification and validation of vessel maneuvering simulation methods[EB/OL] http://www.simman2008.dk/KVLCC/KVLCC2/kvlcc2_ geometry.html.
[19] TOXOPEUS S L, LEE S W. Comparison of manoeuvring simulation programs for SIMMAN test cases[C]//SIMMAN 2008 Workshop on Verification and Validation of Ship Manoeuvring Simulation Methods. Denmark, 2008.
[20] Report of the seakeeping committee, S-175 comparative model experiments[C]// Proc. 18th International Towing Tank Conference (ITTC). Vol. 1. Kobe, Japan. October, 1987.