混氢天然气可以显著降低二氧化碳和其他有害排放物,推动海事行业向低碳转型。本文通过数值模拟研究障碍物阻塞率和数量对密闭船舱内火焰扩散的影响,分析这些参数对火焰传播结构和爆炸压力的作用。结果表明,火焰传播形态受到障碍物阻塞率和数量的显著影响。最大爆炸压力上升速率随阻塞率和障碍物数量增加而增大,初始压力升高也会使压力峰值和上升速率增加。该研究为混氢LNG动力船舶的设计和安全评估提供了理论依据。
Blended hydrogen natural gas can significantly reduce carbon dioxide and other harmful emissions, driving the maritime industry towards low-carbon transformation. This article studies the influence of obstacle blockage rate and quantity on flame diffusion in a closed cabin through numerical simulation, and analyzes the effects of these parameters on flame propagation structure and explosion pressure. The results indicate that the flame propagation pattern is significantly affected by the blockage rate and number of obstacles. The rate of maximum explosion pressure increase increases with the increase of blockage rate and the number of obstacles, and the initial pressure increase will also increase the peak pressure and rate of increase. This study provides a theoretical basis for the design and safety assessment of hybrid hydrogen LNG powered ships.
2025,47(10): 64-71 收稿日期:2024-8-16
DOI:10.3404/j.issn.1672-7649.2025.10.011
分类号:TD712
基金项目:江苏省工信厅核心技术攻关项目(苏财工贸(2023)60号)
作者简介:闫晨朝(1996-),女,硕士,助理工程师,研究方向为海工装备数字化理论与方法
参考文献:
[1] QIN Y, CHEN X. Flame propagation of premixed hydrogen-air explosion in a closed duct with obstacles[J]. International Journal of Hydrogen Energy, 2019, 44: 3944-3952.
[2] 龚慧芝, 赵忠超. LNG在微小通道中沸腾流动与换热特性的数值研究[J]. 舰船科学技术, 2024, 46(5): 126-132.
[3] JOHANSEN CT, CICCARELLI G. Visualization of the unburned gas flow field ahead of an accelerating flame in an obstructed square channel[J]. Combust and Flame, 2009, 156: 405-416.
[4] MCGARY J, AHMED K. Flame-turbulence interaction of laminar premixed deflagrated flames[J]. Combust and Flame, 2017, 176: 439-450.
[5] 束元超, 王珂, 白旭. LNG船舶舱室泄漏爆炸动态响应模拟研究[J]. 舰船科学技术, 2023, 45(24): 14-19.
[6] GUBBA SR, IBRAHIM SS, MALALASEKERA W, et al. Measurements and LES calculations of turbulent premixed flame propagation past repeated obstacles[J]. Combust and Flame, 2011, 158: 2465-2481.
[7] DI SARLI V, DI BENEDETTO A, RUSSO G. Sub-grid scale combustion models for large eddy simulation of unsteady premixed flame propagation around obstacles[J]. Journal of Hazardous Materials, 2010, 180: 71-78.
[8] COATES A, MATHIAS D, CANTWELL B. Numerical investigation of the effect of obstacle shape on deflagration to detonation transition in a hydrogeneair mixture[J]. Combust and Flame, 2019, 209: 278-290.
[9] 汪焓煜. 生物质油在内燃机上应用基础特性[D]. 杭州: 浙江大学, 2020.
[10] 钟安昊. 生物质热裂解油的层流燃烧特性研究[D]. 杭州: 浙江大学, 2018.
[11] ZHOU Q, CHEUNG CS, LEUNG CW, et al. Effects of fuel composition and initial pressure on laminar flame speed of H2/CO/CH4 bio-syngas[J]. Fuel, 2019, 238: 149-158.
[12] 崔锦泉, 周伟, 王智磊, 等. 船舶双燃料发动机LNG供气系统模拟仿真技术应用研究[J]. 舰船科学技术, 2022, 44(18): 122-125.
[13] BRADLEY D. Instabilities and flame speeds in large-scale premixed gaseous explosions[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 1764: 3567-3581.
[14] WANG X, FU J, XIE M, et al. Numerical investigation of laminar burning velocity for methane-hydrogen-air mixtures at wider boundary conditions[J]. Aerospace Science and Technology, 2022, 121: 107393.
[15] MARINOV NM. A detailed chemical kinetic model for high temperature ethanol oxidation[J]. International Journal of Chemical Kinetics, 1999, 31: 183-220.
[16] XIANG L, JIANG H, REN F, et al. Numerical study of the physical and chemical effects of hydrogen addition on laminar premixed combustion characteristics of methane and ethane[J]. International Journal of Hydrogen Energy, 2020, 45: 20501-20514.
[17] ECKART S, PIZZUTI L, FRITSCHE C, et al. Experimental study and proposed power correlation for laminar burning velocity of hydrogen-diluted methane with respect to pressure and temperature variation[J]. International Journal of Hydrogen Energy, 2022, 47: 6334-6348.
[18] BRADLEY D, LAWES M, MUMBY R,et al. The stability of laminar explosion flames[J]. Proceedings of the Combustion Institute, 2019, 37: 1807-1813.
[19] OPPONG F, XU C, LUO Z, et al. Cellularization of 2-methylfuran expanding spherical flame[J]. Combustion and Flame, 2019, 206: 379-389.