本文采用数值计算方法模拟压气机部件壁面粗糙度对其气动性能的影响。首先,建立离心压气机数值计算模型,并通过试验测试进行验证;然后,分析压气机不同部件壁面粗糙度对气动性能和内流场的影响;最后,针对影响压气机气动性能的主要部件,探究其局部壁面粗糙度对气动性能的影响。结果表明,叶轮和扩压器壁面粗糙会严重影响压气机的气动性能,其中扩压器壁面粗糙对压气机气动性能影响最大;蜗壳壁面粗糙会导致压气机稳定运行流量范围大幅减小,但对压气机效率和压比的影响相对较小。在叶轮部件中,轮缘面和叶片壁面粗糙是导致压气机气动性能降低的主要原因,分别导致压气机最高效率降低1.3%和0.7%;而轮毂面粗糙会导致压气机稳定运行流量范围减小,对效率和压比的影响相对较小。扩压器壁面粗糙也是压气机效率和压比降低的主要因素,压气机最大效率降低2.3%。
This paper employs numerical simulation methods to investigate the effects of wall surface roughness on the aerodynamic performance of compressor components. First, a numerical model of a centrifugal compressor was established and validated through experimental testing. Subsequently, the impact of wall surface roughness on various compressor components with respect to aerodynamic performance and internal flow fields was analyzed. Finally, the study explored the influence of localized wall surface roughness on the aerodynamic performance of critical compressor components. The results indicate that surface roughness on the impeller and diffuser walls has a significant impact on the aerodynamic performance of the compressor, with diffuser wall roughness having the most substantial effect. The roughness of the volute wall primarily leads to a significant decrease in the stable operating flow range of the compressor, with relatively minor effects on efficiency and pressure ratio. For the impeller component, surface roughness on the shroud and blades are the main contributors to reduce aerodynamic performance, leading to decreases in maximum isentropic efficiency by 1.3% and 0.7%, respectively. In contrast, surface roughness on the hub mainly reduces the stable operating flow range, with relatively minor effects on efficiency and pressure ratio. In the diffuser, surface roughness is a key factor in reducing compressor efficiency and pressure ratio, leading to a reduction of 2.3% in maximum efficiency.
2025,47(10): 93-99 收稿日期:2024-7-16
DOI:10.3404/j.issn.1672-7649.2025.10.016
分类号:TK474.8
基金项目:国家自然科学基金资助项目(52201356)
作者简介:李赫(1983-),男,硕士,高级工程师,研究方向为船舶轮机工程设计
参考文献:
[1] 张志华. 船舶动力装置概论[M]. 哈尔滨: 哈尔滨工程大学出版社, 2002.
[2] NIKURDASE J. Laws off low in rough pipes(1950translation) [J]. 1933.
[3] SCHLICHTING H, GERSTEN K. Boundary-layer theory[M]. Mc Graw-Hill, 1979.
[4] SCHLICHTING H. Experimental investigation of the problem of surface roughness[J]. Technical Report Archive & Image Library, 1936.
[5] 张浩, 周超, 郭佳男. 压气机叶片表面局部粗糙度影响气动性能机理研究[J]. 航空科学技术, 2019, 30(1): 14-21.
[6] 高磊, 王子楠, 耿少娟, 等. 粗糙度对压气机叶栅损失特性影响的实验研究[J]. 推进技术, 2016, 37(7): 1263-1270.
[7] 孙海鸥, 王立松, 王忠义, 等. 积垢条件下压气机性能衰退数值模拟[J]. 哈尔滨工程大学学报, 2018, 39(11): 1773-1778.
[8] BACK SC, HOBSON GV, SONG SJ, et al. Effects of reynolds number and surface roughness magnitude and location on compressor cascade performance[J]. Journal of Turbomachinery, 2012, 134(5): 051013.
[9] BACK SC, JEONG IC, SOHN JL, et al. Influence of surface roughness on the performance of a compressor bladeina linear cascade: experiment and modeling[C]//Asme Turbo Expo: Power for Land, Sea, & Air. 2009.
[10] CHEN S, SUN S, XU H, et al. Influence of local surface roughness of rotor blade on performance of an axial compressor stage[C]//Asme Turbo Expo: Turbine Technical Conference & Exposition, 2013.
[11] CHEN S, ZHANG C, SHI H, et al. Study on the impact of fouling on axial compressor stage[C]//Asme Turbo Expo: Turbine Technical Conference & Exposition, 2012.
[12] 孟繁娟, 吴永芬, 陈佐一. 提高叶栅叶片升阻比新措施的实验与数值研究[J]. 清华大学学报(自然科学版), 1999(6): 84-86.
[13] 饶帅波. 风力机翼型表面粗糙度对翼型气动性能的影响[D]. 兰州: 兰州理工大学, 2011.