针对某船用轴流涡轮增压器的径向轴承进行性能优化设计,采用数值模拟方法,对比分析不同的轴承油楔结构参数和滑油参数对径向轴承油膜特性的影响;之后开展了径向轴承油楔结构优化设计、供油参数、油楔公差等和转子稳定性的分析。结果表明,油楔宽度L变化对轴承功耗影响最大,而对轴承油膜厚度、油膜压力、油膜温度等参数有一定影响;经优化后的径向轴承-转子系统的运行稳定性得到大幅提升,径向轴承优化后降低了机械功耗3 kW以上。对径向轴承参数的分析方法和结论,对该船用大流量涡轮增压器径向轴承设计具有重要的工程应用价值。
The performance optimization design of the radial bearing of a marine axial flow turbocharger was carried out. The numerical simulation method was used to compare and analyze the influence of different bearing oil wedge structure parameters and lubricating oil parameters on the oil film characteristics of the radial bearing. After that, the optimization design of the oil wedge structure of the radial bearing, the oil supply parameters and the stability of the rotor were analyzed. The results show that the change of the width of the oil wedge L has the greatest influence on the power consumption of the bearing, and has a certain influence on the oil film thickness, oil film pressure, oil film temperature and other parameters of the bearing. The operation stability of the optimized radial bearing-rotor system has been greatly improved, and the mechanical power consumption has been reduced by more than 3 kW after the optimization of the radial bearing. The analysis method and conclusion of the radial bearing parameters have important engineering application value for the design of the radial bearing of the marine large flow turbocharger.
2025,47(10): 100-106 收稿日期:2024-6-26
DOI:10.3404/j.issn.1672-7649.2025.10.017
分类号:U664.121
作者简介:申华(1987-),男,硕士,高级工程师,研究方向为增压器结构设计
参考文献:
[1] 朱大鑫. 涡轮增压与涡轮增压器[M]. 北京: 机械工业出版社, 1992.
[2] ORCUTT F K, NG C W. Steay-state and dynamic properties of the floating-ring bearing[J]. Journal of Lubrication Technology Trans ASME, 1968 , 90(1): 243-253.
[3] WILCOCK D F. Loading carring efficency of floating ring journal bearing[J]. Journal of Lubrication Technology Trans ASME, 1983, 105(4): 275-253.
[4] CHEN W J, GUNTER E J. Introduction to dynamics of rotor-bearing systems[M]. Trafford Publishing, Victoria, BC, CANDA, 2005.
[5] 王国荣, 刘清友, 郑加伟. 流体动力润滑状态下浮动套滑动轴承工作机理研究[J]. 润滑与密封, 2004(5): 13-15.
[6] 王福军. 高速轻载工况下浮环轴承油膜压力场数值仿真分析[D]. 重庆: 重庆大学, 2014.
[7] 郭红, 张直民, 等. 径向动压浮环轴承-转子系统多稳定区域研究[J]. 振动与冲击, 2016(2): 7-11+29.
[8] 彭立强, 郑惠萍, 师占群. 考虑热效应的涡轮增压器浮环轴承动态特性研究[J]. 润滑与密封, 2016(2): 79-83.
[9] 杨帅, 郭红, 张泽斌. 热应力对径向浮环轴承最小厚度及稳定性影响研究[J]. 振动与冲击, 2020(18): 215-222.
[10] 彭立强, 郑惠萍, 师占群. 浮环轴承贫油润化温度预测模型研究[J]. 润滑与密封, 2019(3): 80-84.
[11] GB/T 21466.3-2008. 稳态条件下流体动压径向轴承圆形滑动轴承第三部分: 许用的运行参数[S]. 中国工业机械联合会, 2008.