针对某综合科考船大型动力机组隔振系统隔振效果不理想的情况,首先对隔振效果的倍频程测试数据进行详细分析,并通过实船勘验和振动故障诊断,确定附属管系的振动是导致传递振动的关键因素。通过对振动源进行精确识别和振动传递路径的深入分析,揭示了船体基座振动与机组附属管系振动存在明显关联。因此将优化方向明确在管系优化处理,进而降低发电机组的振动传递到船体基座。试验结果表明,在管系采用综合优化措施后,大型动力系统的隔振效果由21.8 dB提升到32.6 dB,该研究为船用主动力设备隔振系统安装完成后的优化设计提供建议和参考。
In response to the unsatisfactory isolation effect of the isolation system of a large power unit on a comprehensive scientific research vessel, a detailed analysis of the octave band test data of the isolation effect was first conducted. Through actual ship inspection and vibration fault diagnosis, it was determined that the vibration of the auxiliary piping system was the key factor causing the transmission of vibration. Through precise identification of vibration sources and in-depth analysis of vibration transmission paths, it has been revealed that there is a clear correlation between the vibration of the ship's foundation and the vibration of the unit's ancillary piping system. Therefore, the optimization direction will be clearly focused on the damping treatment of the piping system, in order to reduce the transmission of vibration from the generator set to the hull foundation. The experimental results show that after adopting comprehensive vibration reduction measures in the piping system, the isolation effect of the large-scale power system has increased from 21.8 dB to 32.6 dB. This study provides suggestions and references for the optimization design of the isolation system of marine active power equipment after installation.
2025,47(10): 115-118 收稿日期:2014-8-12
DOI:10.3404/j.issn.1672-7649.2025.10.019
分类号:U664.4
基金项目:中华人民共和国交通运输部(交规划函[2019]618号)
作者简介:蔡晓涛(1993-),男,硕士,工程师,研究方向为船舶振动控制
参考文献:
[1] 沈建平, 孙少龙. 基于高速机的船舶低振动推进机组设计及试验[J]. 噪声与振动控制, 2021, 41(1): 140-144,183.
SHEN J P, SUN S L. Design and experiment for low vibration propulsion of the ship using high speed diesel engines[J]. Noise and Vibration Control, 2021, 41(1): 140-144,183.
[2] 蔡晓涛, 黄志武, 陈旭, 等. 可调螺距螺旋桨激励下船尾结构振动控制研究[J]. 舰船科学技术, 2022, 44(18): 15-19.
CAI X T, HUANG Z W, CHEN X, et al. Research on vibration control of stern structure excited by controllable pitch propeller[J]. Ship Science and Technology, 2022, 44(18): 15-19.
[3] 王世良. 混沌隔振技术在船舶减振降噪中的应用[J]. 舰船科学技术, 2020, 42(6): 13-15.
WANG S L. Application of chaos vibration isolation technology in ship vibration reduction and noise reduction[J]. Ship Science and Technology, 2020, 42(3A): 13-15.
[4] 胡泽超, 何琳, 李彦. 隔振器分布对浮筏隔振系统隔振性能的影响[J]. 舰船科学技术, 2016, 38(11): 48-52.
HU Z C, HE L, LI Y. The influence of the isolator’s distribution on floating raft isolation system’s performance[J]. Ship Science and Technology, 2016, 38(11): 48-52.
[5] 张懿时, 童宗鹏, 周炎, 等. 船舶齿轮箱硬弹性隔振技术研究[J]. 噪声与振动控制, 2013, 33(3): 153-155.
ZHANG Y S, TONG Z P, ZHOU Y et al. Research of hard elastic isolation technology of marine gearboxes[J]. Noise and Vibration Control, 2013, 33(3): 153-155.
[6] 王新海, 戴睿婕, 商超, 等. 非运转设备对浮筏隔振效果影响研究[J]. 舰船科学技术, 2021, 43(13): 14-18.
WANG X H, DAI R J, SHANG C, et al. Research on the influence of non-operating equipment on the vibration isolation effect of raft isolation system[J]. Ship Science and Technology, 2021, 43(13): 14-18.
[7] 陈明, 陈秀珍, 孙新占. 大型组合式浮筏减振装置试验研究[J]. 舰船科学技术, 2002, 24(6): 56-60.
CHEN M, CHEN X Z, SUN X Z. Experimental research of huge fabricated raft vibration isolation mounting[J]. Ship Science and Technology, 2002, 24(6): 56-60.
[8] 张能, 何琳, 李彦. 基座刚度对主被动隔振系统控制效果的影响分析[J]. 噪声与振动控制, 2017, 37(3): 62-65.
ZHANG N, HE L, LI Y. Analysis of the effect of base stiffness on control performance of passive-active vibration isolation systems[J]. Noise and Vibration Control, 2017, 37(3): 62-65.