通信系统发送端和接收端的采样偏差是造成系统性能恶化的原因,由于OTFS系统在发送端和接收端需要使用码元波形,本文通过理论推导和不同调制方式的仿真分析OTFS系统在使用高斯脉冲码元波形时采样偏差对系统性能影响。仿真结果表明,采样偏差的影响随着调制方式调制速率的增加呈现倍数级增长,与理论分析基本一致。
The sampling deviation on the transmitter and receiver of the communication system causes performance degradation. Thus the symbol waveform is needed in the transmitter and receiver of the OTFS system, Gaussian pulse is used in the system. The theoretical analysis and simulation on the system performance of the different modulation modes in the OTFS system using Gaussian pulse are presented in this paper. The simulation result indicates that the impression of the sampling deviation presents multiple level growth with the increasing rate of the modulation mode, which is identical with the theoretical analysis.
2025,47(10): 125-129 收稿日期:2023-4-19
DOI:10.3404/j.issn.1672-7649.2025.10.021
分类号:TN911
基金项目:船舶工业国防科技预研基金资助项目(6141B04050101)
作者简介:李欣(1982-),男,高级工程师,研究方向为机载通信系统
参考文献:
[1] ZHANG Z Q, LIU H, WANG Q L, FAN P Z. A survey on low complexity detectors for OTFS systems[J]. ZTE Communications, 2021, 19(4): 3-15.
[2] WEI Z Q, YUAN W J, LI S Y, et al. Orthogonal time-frequency space modulation: a next-generation waveform[J]. IEEE Wireless Communications, 2021, 28(4): 136-144.
[3] 龚晔, 刘瑞霖, 慕镐泽, 等. 面向太赫兹通信的改进OTFS波形调制与设计[J]. 无线电通信技术, 2024, 50(3): 535-540.
GONG Y, LIU R L, MU G Z, et al. Improved OTFS waveform modulation and design for terahertz communication[J]. Radio Communication[J]. Radio Communication Technology, 2024, 50(3): 535-540.
[4] HADANI R. , RAKIB S. , TSATSANIS M. , et al. Orthogonal time frequency space modulation [C]//IEEE Wireless Comminications and Networking Conference (WCNC). San Francisco, USA: IEEE, 2017.
[5] 廖勇, 罗渝, 荆亚昊. 6G新型时延多普勒通信范式: OTFS的技术优势、设计挑战、应用与前景[J]. 电子与信息学报, 2024, 46(5): 1827-1842.
LIAO Y, LUO Y, JING Y H. 6G New time-delay doppler communication paradigm: technical advantages, design challenges, applications and prospects of OTFS[J]. Journal of Electronics and Information Technology, 2024, 46(5): 1827-1842.
[6] RAVITEJA P, KHOA T PHAN, YI H, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation [J]. IEEE Transactions on Wireless Communications, 2018, 17(10): 6501–6515.
[7] THAJ T, VITERBO E. Low complexity iterative rake decision feedback equalizer for zero-padded OTFS systems [J]. IEEE Transactions on Vehicular Technology, 2020, 69(12): 15606-15622.
[8] LI H, DONG Y Y, GONG C H, et al. Low complexity receiver via expectation propagation for OTFS modulation[J]. IEEE Communications Letters, 2021, 25(10): 3180-3184.
[9] YUAN W J, WEI Z Q, YUAN J H, et al. A simple variational Bayes detector for orthogonal time frequency space (OTFS) modulation[J]. IEEE Transactions on Vehicular Technology, 2020, 69(7): 7976-7980.
[10] LI S Y, YUAN W J, WEI Z Q, et al. Hybrid MAP and PIC detection for OTFS modulation[J]. IEEE Transactions on Vehicular Technology, 2021, 70(7): 7193-7198.
[11] XIANG L P, LIU Y S, YANG L L, et al. Gaussian approximate message passing detection of orthogonal time frequency space modulation[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10): 10999-11004.
[12] YUAN Z D, LIU F, YUAN W J, et al. Iterative detection for orthogonal time frequency space modulation with unitary approximate message passing[J]. IEEE Transactions on Wireless Communications, 2022, 21(2): 714-725.
[13] GE Y, DENG Q W, P. C. Ching, et al. Receiver design for OTFS with a fractionally spaced sampling approach[J]. IEEE Transaction on Wireless Communications, 2021, 20(7): 4072-4086.
[14] WEN H F, YUAN W J, LIU Z L, et al. OTFS-SCMA: A downlink NOMA scheme for massive connectivity in high mobility channels[J]. IEEE Transactions on Wireless Communications, 2023, 22(9): 5770-5784.
[15] LIU H Y, LIU Y M, YANG M, et al. On the characterizations of OTFS modulation over multipath rapid fading channel[J]. IEEE Transactions on Wireless Communications, 2023, 22(3): 2008-2021.