舰船编队网络是一个复杂的通信系统,为减少通信延迟,确保信息的及时传递,提高整个编队的反应速度和作战效能,提出基于模拟退火遗传算法的舰船编队网络优化调度方法。以最小通信总延迟与总能耗为目标函数,通过设置约束条件,建立舰船编队网络优化调度模型。利用模拟退火遗传算法求解调度模型,实现最小通信总延迟与总能耗的舰船编队网络优化调度。实验结果表明,应用本文方法后,舰船编队网络的通信总延迟在0~80 ms之间,能耗保持在580 kWh以下。说明本文方法可以有效提升舰船编队网络通信的稳定性和效率,显著增强了编队的作战适应性和应变能力,为海军作战和海上安全提供更为可靠的支撑。
The ship formation network is a complex communication system. To reduce communication latency, ensure timely information transmission, and improve the response speed and combat effectiveness of the entire formation, a ship formation network optimization scheduling method based on simulated annealing genetic algorithm is proposed. A ship formation network optimization scheduling model is established by setting constraints with the objective function of minimizing total communication delay and total energy consumption. Using simulated annealing genetic algorithm to solve the scheduling model and achieve optimal scheduling of ship formation network with minimum total communication delay and total energy consumption. The experimental results show that after applying the method proposed in this paper, the total communication delay of the ship formation network is between 0 and 80ms, and the energy consumption remains below 580kWh. This method can effectively improve the stability and efficiency of ship formation network communication, significantly enhance the combat adaptability and adaptability of the formation, and provide more reliable support for naval operations and maritime safety.
2025,47(10): 155-160 收稿日期:2024-8-9
DOI:10.3404/j.issn.1672-7649.2025.10.026
分类号:U692.43
基金项目:2022 年度山西省教育科学“十四五”规划课题(GH-220360)
作者简介:陆青梅(1979-),女,博士,副教授,研究方向为人工智能、计算机应用技术
参考文献:
[1] VAHABZAD N. BEHNAM M I, AMJAD A M. Optimal energy scheduling of a solar-based hybrid ship considering cold-ironing facilities[J]. IET Renewable Power Generation, 2021, 15(3), 532-547.
[2] LI Y , JIAN S , HSIEH S, et al. A weighted optimal scheduling scheme for congestion control in cloud data center networks[J]. IEEE Transactions on Services Computing, 202316(4), 2402-2410.
[3] SINHA D, ROY R. Optimal scheduling for maximizing information freshness and system performance in industrial cyber physical systems[J]. Computer Communications, 169(Special Issue on Industrial Communication Networks in Smart Factory 4.0), 2021, 169: 33-47.
[4] PHISUTTHANGKOON N, WERAPUN J. Optimal atape task scheduling on reconfigurable and partitionable hierarchical hypercube networks[J]. Parallel computing, 2022, 111: 102923.1-102923.24.
[5] MORADI N, KAYVANFAR V, RAFIEE M. An efficient population-based simulated annealing algorithm for 0–1 knapsack problem[J]. Engineering with Computers, 2021, 38(3): 2771-2790.
[6] MISEVIIUS A, PALUBECKIS G, DREZNER Z. Hierarchicity-based (self-similar) hybrid genetic algorithm for the grey pattern quadratic assignment problem[J]. Memetic Computing, 2021, 13(1): 69-90.
[7] KHAYATIAN H , PARVARESH F , ABOUEI J , et al. Dmt analysis and optimal scheduling for two-hop parallel relay networks[J]. Physical communication, 2021, 46: 101291.1-101291.16.
[8] SCHANDY J , OLOFSSON S , NICOLÁS G, et al. (2021). Improving sensor network performance with directional antennas: a cross-layer optimizationÁ. ACM Transactions on Sensor Networks (TOSN), 2021, 17(4): 48.1-48.21.
[9] AHANI G , YUAN D, SUN S. Optimal scheduling of age-centric caching: tractability and computation[J]. IEEE transactions on mobile computing, 2022, 21(8): 2939-2954.
[10] SUN X L , KOMG D Z , ZHANG H S, et al. Simulation of network traffic scheduling mathematical model based on virtual software[J]. Computer Simulation, 2023, 40(5): 417-421.
[11] RAJARAJESWARI P , SHYAMALA C, MOHANA S. Hybrid grasshopper and improved cat swarm optimization algorithm-based clustering for guaranteeing energy stability and network lifetime in wsn[J]. International journal of communication systems, 2023, 36(6), 5444.1-5444.24.
[12] ANITHA M , SOMASUNDARAM P , BALAJI S, et al . Optimal scheduling of directional sensors with qos constraints to enhance the lifetime[J]. Wireless Personal Communications, 2022, 124(1): 741-761.
[13] ATSUSHI Y, PATRICK A. Inter-temporal aggregation for spatially explicit optimal harvest scheduling under area restrictions[J]. Forest Science, 2021, 67(5): 587-606.