近海航运中船舶吃水精准控制对安全与效率至关重要,传统人工观测精度不足,单一测量技术受环境制约。本文对船舶三维吃水模型动态匹配技术进行研究,构建包含多源数据采集预处理、多层感知机神经网络模型设计及动态反馈机制的技术架构,实现船舶载重、水文环境与航行任务的动态耦合建模,在算法层面,采用多层感知机(MLP)神经网络,有效处理多变量非线性耦合关系,其三维吃水预测精度较传统方法提升70%–80%。本文构建的船舶三维吃水动态匹配模型对保障船舶安全航行具有重要作用。
Accurate control of ship draft is very important for safety and efficiency in offshore shipping. Traditional manual observation accuracy is insufficient, and single measurement technology is restricted by environment. This paper studies the dynamic matching technology of ship's three-dimensional draft model, builds a technical framework including multi-source data acquisition and pre-processing, multi-layer perceptron neural network model design and dynamic feedback mechanism, and realizes the dynamic coupling modeling of ship's load, hydrological environment and navigation tasks. At the algorithm level, multi-layer perceptron (MLP) neural network is adopted. The accuracy of 3D draft prediction is improved by 70%~80% compared with the traditional method. The ship's three-dimensional draft dynamic matching model constructed in this paper plays an important role in ensuring ship's safe navigation.
2025,47(10): 176-180 收稿日期:2025-4-15
DOI:10.3404/j.issn.1672-7649.2025.10.030
分类号:U667.65
作者简介:王霞(1983-),女,硕士,副教授,研究方向为虚拟现实技术应用
参考文献:
[1] 张桂荣, 陈志宏, 刘志荣, 等. 基于改进YOLOv5s的船舶水尺检测模型研究[J]. 水道港口, 2024, 45(6): 954-962.
ZHANG G R, CHEN Z H, LIU Z R, et al. Research on ship water scale detection model based on improved YOLOv5s[J]. Waterway and Port, 2024, 45(6): 954-962.
[2] 冯维娜, 蒋梦婉. 基于机器视觉技术的船舶吃水深度动态检测[J]. 舰船科学技术, 2024, 46(14): 158-161.
FENG W N, JIANG M W. Dynamic detection of ship draft depth based on machine vision technology[J]. Ship Science and Technology, 2024, 46(14): 158-161.
[3] 李嘉琪. 夜间低照度下的船舶吃水线检测算法研究[D]. 大连:大连海事大学, 2024.
[4] 张德兴, 万红, 郑力铭. 考虑吃水差因素的船舶岸壁效应数值模拟研究[J]. 北部湾大学学报, 2021, 36(2): 14-18+73.
ZHANG D X, WAN H, ZHENG L M. Numerical simulation study on ship bank effect considering trim factors[J]. Journal of Beibu Gulf University, 2021, 36(2): 14-18+73.
[5] 张磊, 陈爽, 刘明俊, 等. 长江干线航道通过大型船舶尺度研究[J]. 武汉理工大学学报, 2024, 46(1): 112-120.
ZHANG L, CHEN S, LIU M J, et al. Study on the dimensions of large ships passing through the yangtze river main channel[J]. Journal of Wuhan University of Technology, 2024, 46(1): 112-120.
[6] 赵新宇, 王宽, 陈安. 基于湍流模型的船舶运动及吃水变化数值求解[J]. 浙江交通职业技术学院学报, 2018, 19(Z1): 42-48.
ZHAO X Y, WANG K, CHEN A. Numerical solution of ship motion and draft change based on turbulence model[J]. Journal of Zhejiang Institute of Communications, 2018, 19(Z1): 42-48.
[7] 陈轩, 周家海. 船舶吃水深度数据检测关键技术及应用[J]. 舰船科学技术, 2022, 44(8): 182-185.
CHEN X, ZHOU J H. Key technologies and applications of ship draft depth data detection[J]. Ship Science and Technology, 2022, 44(8): 182-185.
[8] 王新, 孙志峰. 基于升船机实船试验的船舶吃水标准影响因素分析[J]. 水道港口, 2020, 41(5): 578-584.
WANG X, SUN Z F. Analysis of influencing factors of ship draft standards based on shiplift full-scale test[J]. Waterway and Port, 2020, 41(5): 578-584.