船舶推进系统控制性能关乎船舶运行效率与安全,深入研究并优化控制算法意义重大。本文聚焦SPSB测试平台,其由硬件层、软件层和数据接口构成,利用实时仿真平台构建船舶推进系统模型,其工作流程涵盖硬件接入、指令发送与反馈、算法评估及优化循环。在算法优化上,使用MPC算法和自适应算法在平台上进行船舶推进系统控制性能的测试仿真,结果表明使用SPSB测试平台可以全面分析外界参数改变时船舶推进系统的工作状态,并可以合理地利用不同算法有效提升推进系统控制效能。
The control performance of ship propulsion system is related to the efficiency and safety of ship operation, so it is of great significance to study and optimize the control algorithm. This paper focuses on the SPSB test platform, which is composed of hardware layer, software layer and data interface. The real-time simulation platform is used to build the ship propulsion system model. Its workflow includes hardware access, instruction sending and feedback, algorithm evaluation and optimization cycle. In terms of algorithm optimization, MPC algorithm and adaptive algorithm are used to test and simulate the control performance of the ship propulsion system on the platform. The results show that the SPSB test platform can comprehensively analyze the working state of the ship propulsion system when external parameters change, and can effectively improve the control efficiency of the propulsion system by using different algorithms.
2025,47(10): 185-189 收稿日期:2024-9-12
DOI:10.3404/j.issn.1672-7649.2025.10.032
分类号:U671
作者简介:刘玉乾(1990-),男,硕士,讲师,研究方向为计算机科学与技术
参考文献:
[1] 李盛雄, 刘明. 功率限制策略在船舶电力推进系统中的应用[J]. 船电技术, 2025, 45(1): 21-24.
LI S X, LIU M. Application of power limiting strategy in marine electric propulsion system[J]. Marine Electric & Electronic Technology, 2025, 45(1): 21-24.
[2] 唐启师, 仇海斌, 唐宇卓, 等. 船舶推进系统中的涡轮机械性能优化与仿真分析[J]. 现代制造技术与装备, 2024, 60(9): 77-79.
[3] 刘保平, 杨清华. 船舶电力推进系统非线性负载谐波抑制研究[J]. 船电技术, 2024, 44(8): 9-12.
LIU B P, YANG Q H. Research on harmonic suppression of nonlinear loads in marine electric propulsion system[J]. Marine Electric & Electronic Technology, 2024, 44(8): 9-12.
[4] 刘世伟, 杨双齐. 船舶动力推进系统加速性能控制方法改进[J]. 舰船科学技术, 2024, 46(12): 69-72.
LIU S W, YANG S Q. Improvement of acceleration performance control method for marine power propulsion system[J]. Ship Science and Technology, 2024, 46(12): 69-72.
[5] 薛亮, 常书平, 崔益烽. 船舶对转舵桨推进系统加速控制方法仿真[J]. 军事交通学报, 2023, 2(1): 90-94.
XUE L, CHANG S P, CUI Y F. Simulation of acceleration control method for marine contra-rotating rudder propeller propulsion system[J]. Journal of Military Transportation University, 2023, 2(1): 90-94.
[6] 张聪, 周永健, 黄健, 等. 基于虚拟电压矢量模型预测转矩的船舶推进电机控制研究[J]. 舰船科学技术, 2024, 46(7): 98-105.
ZHANG C, ZHOU Y J, HUANG J, et al. Research on control of marine propulsion motor based on virtual voltage vector model predictive torque[J]. Ship Science and Technology, 2024, 46(7): 98-105.
[7] 胡红钱, 施伟锋, 谢嘉令. 船舶电力推进系统螺旋桨负载特性半实物仿真平台研究[J]. 黑龙江科学, 2023, 14(18): 70-73+76.
[8] 刘世玉, 龙文枫, 刘乐. 基于Modelica的船舶电力推进系统仿真研究[J]. 船电技术, 2023, 43(3): 23-26.
LIU S Y, LONG W F, LIU L. Simulation research on marine electric propulsion system based on modelica[J]. Marine Electric & Electronic Technology, 2023, 43(3): 23-26.