为提高船舶初步设计效率,提出一种基于SQL数据库和KD-Tree算法的船舶型线快速匹配方法。针对船舶数据繁多复杂的问题,利用SQL语言保存、分类和提取船舶设计过程中的型线数据和特征线数据,提高了数据的存储和利用效率。针对船体复杂曲面的匹配问题,采取基于特征线描述船体特征,并求解特征线B样条控制点的方法保存船体的曲面特征数据。针对高维度变量的匹配问题,在不同大小的测试集中采用KD-Tree结构保存数据并采用最邻近搜索算法,能将船体型线的搜索匹配速度提高34.31%~84.16%。该方法对提高船舶初步设计效率提供有益的借鉴和帮助。
To enhance the efficiency of ship preliminary design, this study proposes a ship hull rapid matching method based on SQL database and KD-Tree algorithm. Addressing the challenge of numerous and complex ship data, the approach utilizes SQL language for the storage, categorization, and extraction of hull form and characteristic lines data, thereby amplifying data storage and utilization efficiency within the ship design process. Confronting the intricate matching complex posed by ship surfaces, the method employs a characteristic-lines-oriented strategy to delineate vessel characteristics. Additionally, this study archive surface characteristic data through the derivation of B-spline control points from characteristic lines. In addressing the matching complexity inflation problem posed by high-dimensional variables, the study integrates KD-Tree structure for data storage. Moreover, it utilizes the nearest neighbor search algorithm to notably increase the search matching velocity of ship hulls by 34.31% to 84.16% in test databases. This methodology holds substantive implications for advancing the efficiency of ship preliminary design processes.
2025,47(11): 8-14 收稿日期:2024-8-29
DOI:10.3404/j.issn.1672-7649.2025.11.002
分类号:U664
基金项目:工信部资助项目(ZTZB-23-990-030)
作者简介:余恺(1999-),男,硕士研究生,研究方向为船型数据库
参考文献:
[1] MONACA U I, BERTAGNA S, MARINO A, et al. Integrated ship design: an innovative methodological approach enabled by new generation computer tools[J]. International Journal on Interactive Design and Manufacturing, 2020, 14(1): 59-76.
[2] 严珂. 专家系统和数据库技术在船舶设计的应用[J]. 舰船科学技术, 2021, 43(18): 4-6.
YAN K. Application of expert system and database technology in ship design[J]. Ship Science and Technology, 2021, 43(18): 4-6.
[3] 周志成. 母型船设计模式在海军舰艇数据库构建中的应用[J]. 舰船科学技术, 2016, 38(2): 118-120.
ZHOU Z C. The application of the design pattern of the mother ship in the construction of navy ship database[J]. Ship Science and Technology, 2016, 38(2): 118-120.
[4] 揭正华. 基于船模试验数据库的快速性预报研究[J]. 上海船舶运输科学研究所学报, 2004(2): 73-79.
JIE Z H. Research on prediction of ship powering performance based on ship model testing database[J]. Journal of SSSRI, 2004(2): 73-79.
[5] RINAURO B, BEGOVIC E, MAURO F, et al. Regression analysis for container ships in the early design stage[J]. Ocean Engineering, 2024, 292: 116499.
[6] ZIMANYI E. Temporal aggregates and temporal universal quantification in standard SQL[J]. SIGMOD Record, 2006, 35(2): 13-18.
[7] 魏方以. 基于SQL数据库的船舶主要要素确定方法及其应用研究[D]. 武汉: 武汉理工大学, 2011.
[8] 邱杰. 基于PB+SQL的船体分段材料核算及查询系统[J]. 长春工业大学学报(自然科学版), 2013, 34(4): 401-406.
QIU J. Material query system of ship section based on PB+SQL[J]. Journal of Changchun University of Technology (Natural Science Edition), 2013, 34(4): 401-406.
[9] TRINCAS G, MAURO F, BRAIDOTTI L, et al. Handling the path from concept to preliminary ship design[J]. Marine Design XIII, 2018, 181–192.
[10] JON L B. Multidimensional binary search trees used for associative searching[J]. Communications of the ACM, 1975, 18: 509-517.
[11] ALEO P D, MALANCHEV K L, PRUZHINSKAYA M V, et al. SNAD transient miner: Finding missed transient events in ZTF DR4 using KD-Trees[J]. New Astronomy, 2022, 96: 101846.
[12] JIAO J B, LI W F. Ship abnormal behavior detection based on KD-Tree and clustering algorithm[J]. International Conference on Intelligent Computing and Signal Processing, 2023, 1315–1318.
[13] 李寅灏, 顾解忡, 马宁. KCS艏艉型线优化及其对推进效率的影响[J]. 船舶工程, 2023, 45(6): 37-44.
LI Y H, GU X C, MA N. Bow and stern optimization of KCS and effect on propulsive efficiency[J]. Ship Engineering, 2023, 45(6): 37-44.
[14] CHUDY F, WOZNY P. Linear-time algorithm for computing the bernstein–bézier coefficients of b-spline basis functions[J]. Computer-Aided Design, 2023, 154: 103434.