多体船的水动力响应研究是目前水动力学研究的热门方向。本文采用STAR-CCM+软件,基于重叠网格技术,对不同波长工况下多体船的水动力响应进行研究,发现随着波长船长比的递增,水翼多体船的纵摇幅值先增大再减小,垂荡幅值逐渐增大。之后又研究了不同水翼面积对多体船水动力响应的影响,以此来对多体船进行水翼优化提高多体船的航行稳定性。发现随着水翼面积的递增,水翼多体船的纵摇幅值逐渐增大,垂荡幅值先增大再减小。因此在水翼多体船快速航行的过程中,在适度范围内减小水翼的面积,能够提高多体船的航行稳定性,在与原水翼面积比值为0.95时多体船的航行稳定性最好。
The study of hydrodynamic response of multi-body ships is currently a hot topic in hydrodynamic research. This article uses STAR-CCM+ software and overlapping grid technology to study the hydrodynamic response of multi-body ships under different wavelength conditions. It is found that as the wavelength to length ratio increases, the pitch amplitude of the hydrofoil multi-body ship first increases and then decreases, and the heave amplitude gradually increases. Afterwards, the influence of different hydrofoil areas on the hydrodynamic response of multi-body ships was studied to optimize their structure and improve their navigation stability. It was found that as the hydrofoil area increased, the pitch amplitude of the hydrofoil multi-body ship gradually increased, and the heave amplitude first increased and then decreased. Therefore, in the process of rapid navigation of hydrofoil multi-body ships, reducing the area of the hydrofoil within a moderate range can improve the navigation stability of the multi-body ship. The best navigation stability is achieved when the ratio of the hydrofoil area to the original hydrofoil area is 0.95.
2025,47(11): 15-19 收稿日期:2024-7-9
DOI:10.3404/j.issn.1672-7649.2025.11.003
分类号:U661.1
基金项目:山东省船舶控制工程与智能系统工程技术研究中心科研开放专项资金项目(SSCC20210001)
作者简介:张凯(1989-),男,硕士,讲师,研究方向为海洋工程水动力
参考文献:
[1] JOHN R. MEYER, JR. Ships that fly[J]. International Hydrofoil Society, 1990(1-3): 13-14.
[2] 刘明. 内河船舶岸壁效应的水动力过程研究[D]. 重庆: 重庆交通大学, 2016.
[3] 章阳, 廉力之. 高性能复合型舰船研究综述[J]. 机电工程技术, 2019, 48(9): 11-14.
ZHANG Y, LIAN L Z. Research review of high performance composite ships[J]. Mechanical and Electrical Engineering Technology, 2019, 48(9): 11-14.
[4] 周进. 带固定水翼滑行艇阻力与耐波性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[5] 翟亮. 水翼参数对双体小水线面水翼复合船阻力性能的影响[D]. 上海: 上海交通大学, 2016.
[6] 孟毅. 水翼参数对双体小水线面水翼复合船耐波性的影响[D]. 上海: 上海交通大学, 2018.
[7] 张宇. 翼滑艇水翼设计及水动力特性研究[D]. 镇江: 江苏科技大学, 2017.
[8] WANG S M, DUAN W Y, XU Q L, et al. Study on fast interference wave resistance optimization method for trimaran outrigger layout[J]. Ocean Engineering, 2021, 232(1): 104-109.
[9] 张伟. 带有主动式T型翼的双体船纵向稳定控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
[10] 梁家健. 水翼船水翼参数设计以及对翼航性能的影响[J]. 舰船科学技术, 2022, 44(12): 16-21.
LIANG J J. Design of hydrofoil parameters for hydrofoil ships and their impact on wing navigation performance[J]. Ship Science and Technology, 2022, 44(12): 16-21.
[11] 张军, 仲铭杰, 杨一帆, 等. 基于模型预测静态规划的高速多体船减纵摇控制[J]. 舰船科学技术, 2024, 46(10): 152-156.
ZHANG J, ZHONG M J, YANG Y F, et al. High speed multi-body ship anti pitch control based on model predictive static programming[J]. Journal of Naval Science and Technology, 2024, 46(10): 152-156.
[12] 许炜东, 张军, 仲铭杰, 等. 基于增量预测控制的高速多体船垂向运动稳定研究[J]. 兵器装备工程学报, 2023, 44(2): 126-131.
XU W D, ZHANG J, ZHONG M J, et al. Research on vertical motion stability of high speed multibody ships based on incremental predictive control[J]. Journal of Weapon Equipment Engineering, 2023, 44(2): 126-131.
[13] 莫兰. 海洋工程水动力学 [M]. 青岛: 中国海洋大学出版社, 2012.