船舶操纵性能直接关乎航行安全与运输效率,然而传统船舶操纵性能研究模型在应对复杂海况及实际航行多变工况时存在局限性。本文深入探究MMG分离建模及改进方法,MMG模型将船舶系统分解为船体、螺旋桨、舵等子系统分别建模,改进过程中充分考量非线性因素、波浪作用、螺旋桨空泡效应以及舵叶动态响应等复杂情形。基于Matlab/Simulink搭建仿真环境,针对横向水动力系数Yv、舵升力系数CL、螺旋桨推力系数KT进行敏感性分析,结果表明三者对船舶回转半径影响显著,其中舵升力系数CL的影响最为突出。本文成果为船舶设计的优化以及实际航行操控策略制定提供重要参考。
The handling performance of ships is directly related to navigation safety and transportation efficiency. However, traditional research models of ship handling performance have limitations when dealing with complex sea conditions and variable working conditions in actual navigation. This paper deeply explores the separation modeling and improvement methods of MMG. The MMG model decomposes the ship system into subsystems such as the hull, propeller, and rudder for separate modeling. During the improvement process, complex situations such as nonlinear factors, wave effects, propeller cavitation effects, and dynamic responses of rudder blades are fully considered. A simulation environment was built based on Matlab/Simulink, and sensitivity analyses were conducted on the lateral hydrodynamic coefficient Yv, rudder lift coefficient CL, and propeller thrust coefficient KT. The results show that the three have a significant influence on the turning radius of the ship. Among them, the influence of the rudder lift coefficient CL is the most prominent. The research results of this study provide important references for the optimization of ship design and the formulation of actual navigation control strategies.
2025,47(11): 25-29 收稿日期:2024-12-10
DOI:10.3404/j.issn.1672-7649.2025.11.005
分类号:U667.65
作者简介:沈灿良(1985-),男,硕士,讲师,研究方向为航海技术
参考文献:
[1] 闫宏生, 张晨昊, 苑恒. 极地航行船舶回转操纵性能仿真研究[J]. 舰船科学技术, 2024, 46(18): 1-8.
YAN H S, ZHANG C H, YUAN H. Simulation research on maneuvering performance of polar navigation ships during turning[J]. Ship Science and Technology, 2024, 46(18): 1-8.
[2] 李成海, 刘杰, 胡甚平, 等. 优化船舶操纵性能计算分析[J]. 青岛远洋船员职业学院学报, 2024, 45(3): 14-20.
LI C H, LIU J, HU S P, et al. Calculation and analysis of optimizing ship maneuvering performance[J]. Journal of Qingdao Ocean Shipping Mariners College, 2024, 45(3): 14-20.
[3] 刘昕, 于海龙. 极地船舶冰区操纵性能的六自由度离散元分析[J]. 计算力学学报, 2022, 39(3): 357-364.
LIU X, YU H L. Six - degree - of - freedom discrete element analysis of maneuvering performance of polar ships in ice areas[J]. Chinese Journal of Computational Mechanics, 2022, 39(3): 357-364.
[4] 黎书琦. 基于MMG的浅水域环境下船舶六自由度回转运动数值仿真[D]. 大连:大连海事大学, 2024.
[5] 刘冬雨, 高霄鹏, 霍聪. 槽道型无人双体船操纵性预报研究[J]. 船舶力学, 2024, 28(4): 501-512.
LIU D Y, GAO X P, HUO C. Research on maneuverability prediction of trench - type unmanned catamarans[J]. Journal of Ship Mechanics, 2024, 28(4): 501-512.
[6] 王宗开, 齐冬林, 戴官全, 等. 基于操纵试验参数下船舶运动模型动态仿真研究[J]. 北部湾大学学报, 2020, 35(2): 6-13.
WANG Z K, QI D L, DAI G Q, et al. Dynamic simulation research on ship motion models based on maneuvering test parameters[J]. Journal of Beibu Gulf University, 2020, 35(2): 6-13.
[7] 林福泉. 固定吊舱式混合对转桨推进系统对船舶操纵性能的影响分析[J]. 船海工程, 2021, 50(4): 72-76.
LIN F Q. Influence analysis of fixed podded contra - rotating propeller propulsion system on ship maneuvering performance[J]. Ship & Ocean Engineering, 2021, 50(4): 72-76.
[8] 茹志鹃. MMG分离建模在舰船操纵性仿真软件开发过程的应用[J]. 舰船科学技术, 2020, 42(22): 172-174.
RU Z J. Application of MMG separation modeling in the software development process of ship maneuverability simulation[J]. Ship Science and Technology, 2020, 42(22): 172-174.