为了评估斜航对船舶水动力性能的影响,本文以国际标准船模KVLCC2为研究对象进行水动力特性数值计算。首先通过数值计算结果和相关实验结果的对比证明数值模拟方法的合理性。然后在不同斜流角度下对比船-桨-舵系统与桨-舵系统中螺旋桨的水动力特性,研究船体与斜流角度对舵的升力、螺旋桨水动力特性以及螺旋桨尾涡的影响。研究表明,斜流角度以及船体均会对螺旋桨和舵的相关水动力系数造成影响。由于船体的影响使得船-桨-舵系统中螺旋桨的推力、转矩均大于桨-舵系统;船-桨-舵系统桨后左右侧的涡量随着斜流角度的增加出现越来越明显的分离,而桨-舵系统的分离情况相对较弱;船体导致桨对舵前方来流的增速效果发生了变化,主要表现为船-桨-舵系统中舵的升力小于桨-舵系统。
This paper undertakes numerical simulations of hydrodynamic characteristics, focusing on the international standard ship model KVLCC2, to assess the impact of oblique sailing on the ship's hydrodynamic behavior. Firstly, the validity of the numerical simulation method is demonstrated by comparing the results from numerical calculations with relevant experimental data. Subsequently, the hydrodynamic characteristics of the propeller in the hull-propeller-rudder system are contrasted with those in the propeller-rudder system, under various oblique flow angles. The influence of oblique flow angles and the hull on the propeller's hydrodynamic characteristics, its wake vortex, and the lift force of the rudder is analyzed. The findings reveal that both the oblique flow angle and the hull geometry significantly influence the pertinent hydrodynamic coefficients associated with the propeller and rudder. Due to the influence of the hull, the thrust and torque of the propeller in the hull-propeller-rudder system are both greater than those in the propeller-rudder system. With the increase in oblique flow angle, a more pronounced separation of vortex strength is observed behind the propeller in the hull-propeller-rudder system, both laterally to the left and right. However, the separation in the propeller-rudder system is comparatively less pronounced. The presence of the hull modifies the way in which the propeller accelerates the flow towards the rudder. Consequently, the lift generated by the rudder is notably reduced in the hull-propeller-rudder system, as compared to the propeller-rudder configuration.
2025,47(11): 35-41 收稿日期:2024-7-30
DOI:10.3404/j.issn.1672-7649.2025.11.007
分类号:U661.1
作者简介:冀楠(1981-),男,博士,副教授,研究方向为船舶水动力性能分析与优化
参考文献:
[1] LUNGU A. Hydrodynamic loads and wake dynamics of a propeller working in oblique flow [J]. IOP Conference Series: Materials Science and Engineering, 2020.
[2] DUBBIOSO G, MUSCARI R, MASCIO A D. Analysis of a marine propeller operating in oblique flow. Part 2: Very high incidence angles [J]. Comput Fluids 2014, (92): 56–81.
[3] 李浩然, 冀楠, 钱志鹏, 等. 斜流中操舵对螺旋桨性能影响研究[J]. 舰船科学技术, 2022, 44(19): 52-58.
LI H R, JI N, QIAN Z P, et al. Study on influence of steering in oblique flow on propeller performance[J]. SHIP SCIENCE AND TECHNOLOGY, 2022, 44(19): 52-58.
[4] 翟树成, 苏一华, 刘登成, 等. 船舶斜航状态下螺旋桨水动力载荷变化规律模拟研究[C]//中国造船工程学会船舶力学学术委员会. 协同创新 砥砺奋进——船舶力学学术委员会第九次全体会议文集. 中国船舶科学研究中心;中国船级社规范与技术中心, 2018.
[5] ZHANG Y F, BJÖRN W , DÍAZ R H O , et al. Influence of drift angle on the propulsive efficiency of a fully appended container ship (KCS) using Computational Fluid Dynamics[J]. Ocean Engineering, 2024, 292116537.
[6] SUN S, LI L, WANG C, et al. Numerical prediction analysis of propeller exciting force for hull-propeller-rudder system in oblique flow[J] International Journal of Naval Architure and Ocean Engineering, 2018(10): 69–84.
[7] 张一久, 郝永志, 彭晓星, 等. 不同漂角下纵倾对集装箱船阻力影响的数值分析[J]. 舰船科学技术, 2023, 45(11): 46-50.
ZHANG Y J, HAO Y Z, PENG X X, et al. Numerical study on the influence of trim on drag of container ship under different drift angles[J]. SHIP SCIENCE AND TECHNOLOGY, 2023, 45(11): 46-50.
[8] 李想, 董金爽, 陈浩森. 斜流中船舶水动力及伴流场数值预报分析[J]. 船舶工程, 2021, 43(8): 42-48+62.
[9] XING T, BHUSHAN S, STERN F. Vortical and turbulent structures for KVLCC2 at drift angle 0, 12, and 30 degrees[J]. Ocean Engineering, 2012, 5523–5543.
[10] Workshop on Verification and Validation of Ship Maneuvering Simulation Methods, 2014[EB/OL]. http://www.simman2014.dk.
[11] 冯松波. 船—桨—舵系统操纵水动力数值研究[D]. 上海: 上海交通大学, 2015.
[12] ITTC-Quality Manual, CFD General. Uncertainty Analysis in CFD Verification and Validation Methodology and Procedures[S]. 7.5–03–01–01, 2017.
[13] LIU H, MA N, GU X C . CFD prediction of ship-bank interaction for KCS under extreme conditions[J]. Journal of Marine Science and Technology, 2021, 26: 1062-1077.
[14] 孙帅, 王超, 常欣, 等. 浅水效应对船舶阻力及流场特性的影响分析[J]. 哈尔滨工程大学学报, 2017, 38(4): 499-505.