本文针对交变水压作用下典型环肋圆柱壳结构的疲劳裂纹扩展问题进行研究。首先,设计加工大厚度缩比试验模型,基于模型实测数据的静强度数值仿真结果,制定局部取样、预制裂纹方案;其次,通过开展压力筒静水外压强度试验及内外压差疲劳试验,获得结构应变及预制表面裂纹的扩展情况;最后,根据模型试验数据和经典公式,对肋骨角焊缝壳板预制纵向表面裂纹扩展情况进行预报。研究表明,水下耐压环肋圆柱壳结构虽然受力状态为压应力,在交变水压作用下同样存在疲劳问题。
In this paper, the fatigue crack propagation of typical ring-rib cylindrical shell structures under alternating water pressure is studied. First, a large thickness shrinkage test model is designed. Based on the static strength numerical simulation results of the measured data of the model, a local sampling and prefabrication crack scheme is developed. Secondly, the strain of the structure and crack propagation of the prefabricated surface were obtained by carrying out the hydrostatic external pressure strength test and the fatigue test of internal and external pressure difference. Finally, according to the model test data and the classical formula, the longitudinal surface crack propagation of the prefabricated rib fillet weld shell plate is predicted. The research shows that although the stress state is compressive stress, the fatigue problem also exists under alternating water pressure.
2025,47(11): 42-47 收稿日期:2024-8-21
DOI:10.3404/j.issn.1672-7649.2025.11.008
分类号:U674.941
基金项目:海装预研项目(K6350)
作者简介:谢晓忠(1988-),男,博士,高级工程师,研究方向为水下工程结构强度与稳定性
参考文献:
[1] 张佳敏. 高强钢焊接接头双轴疲劳裂纹扩展研究[D]. 杭州: 浙江大学, 2014.
[2] 李良碧, 王自力. 潜艇结构疲劳强度研究综述[J]. 华东船舶工业学院学报(自然科学版), 2004, 18(3): 15-20.
[3] PARIS P C, ERDOGAN F. A critical analysis of crack propagation laws[J]. Journal of Basic Engineering, 1963, 85(1): 528-533.
[4] FORMAN R G, KEARNEY V E, ENGLE R M. Numerical analysis of crack propagation in cyclic-loaded structures[J]. Journal of Basic Engineering, 1967, 89(3): 459-463.
[5] NEWMAN JC J, RAJU IS. Analyses of surface cracks in finite plates under tension or bending loads[J]. NASA Technical Paper 1578, 1979.
[6] NEWMAN JC, RAJU IS. An empirical stress intensity factor equation for the surface crack[J]. Engineering Fracture Mechanics, 1981, 15: 185-192.
[7] 李晗. 新高强钢潜艇结构疲劳裂纹扩展寿命研究[D]. 哈尔滨: 哈尔滨工程大学, 2002.
[8] 姚鋆凡. 大潜深结构的低周疲劳可靠性研究[D]. 镇江: 江苏科技大学, 2019.
[9] 黄如旭, 陈鹏, 李立业, 等. 基于SINTAP-FAD的含裂纹耐压结构安全评定研究[J]. 船舶力学, 2023, 23(3): 1051-1060.
[10] 陈孝渝. 潜艇和潜水器结构的低周疲劳[M]. 北京: 国防工业出版社, 1990.
[11] 陈良增, 陈孝渝. 潜艇结构低周疲劳性能试验研究[J]. 舰船科学技术, 1991(2): 19-20.
CHEN L Z, CHEN X Y. Experimental study on low cycle fatigue performance of submarine structure[J]. Ship Science and Technology, 1991(2): 19-20.
[12] 谢晓忠, 陈沙古, 高原, 等. 超高压深海环境下多结构并行疲劳试验技术研究[J]. 装备环境工程, 2023, 20(9): 124-132.
[13] 徐秉汉, 朱邦俊, 欧阳吕伟, 等. 现代潜艇结构强度的理论与试验[M]. 北京: 国防工业出版社, 2007.
[14] 黄小平, 贾贵磊, 崔维成, 等. 海洋钢结构疲劳裂纹扩展预报单一扩展率曲线模型[J]. 船舶力学, 2011, 15(1-2): 118-125.