随着海上风电开发的深远海化,传统的单桩基础和导管架基础将难以满足深远海海上风电开发的需求,漂浮式基础将成为未来深远海海上风电的重要基础型式。然而,由于漂浮式风机平台处于运动状态,导致其输出电缆转变为动态电缆,如何安全、可靠地对动态电缆进行设计成为漂浮式风机开发的主要挑战之一。为指导漂浮式风机平台动态海缆的设计和保护,基于OrcaFlex软件开展漂浮式平台缓波形动态海缆服役特性分析,分析研究了不同结构参数如浮筒长度、浮筒起始位置以及悬挂角对海缆服役性能的影响。分析结果表明,对于缓波形动态海缆,海缆曲率峰值出现在防弯器端、上下两拱中点及入泥端。
With the development of offshore wind power, the traditional single pile foundation and jacket foundation will be difficult to meet the needs of offshore wind power development, floating foundation will become an important foundation type of offshore wind power in the future. However, because the floating fan platform is in motion, its output cable is transformed into a dynamic cable, and how to design the dynamic cable safely and reliably has become one of the main challenges in the development of floating fan. In order to guide the design and protection of dynamic submarine cable for floating fan platform, OrcaFlex software is used to analyze the service characteristics of slow-wave dynamic submarine cable for floating platform, and the effects of different structural parameters such as buoy length, buoy starting position and suspension Angle on the service performance of submarine cable are analyzed and studied. The analysis results show that for the slow wave dynamic submarine cable, the peak curvature of the submarine cable appears at the end of the anti-bending device, the midpoint of the upper and lower arches and the mud entry end.
2025,47(11): 87-93 收稿日期:2024-6-17
DOI:10.3404/j.issn.1672-7649.2025.11.015
分类号:U671.99
作者简介:邱银锋(1983-),男,博士,高级工程师,研究方向为海上新能源发电、新型电力系统等规划与设计
参考文献:
[1] Global Wind Report 2024 [R]. GWEC, 2024.
[2] EDWARDS E C, HOLCOMBE A, BROWN S, et al. Trends in floating offshore wind platforms: A review of early-stage devices [J]. Renewable and Sustainable Energy Reviews. 2024, 193: 114271.
[3] 姜磊, 高景晖, 钟力生, 等. 远海漂浮式海上风电平台用动态海缆的发展[J]. 高压电器, 2022, 58(1): 1–11.
[4] 刘小燕, 韩旭亮, 秦梦飞. 漂浮式风电技术现状及中国深远海风电开发前景展望[J]. 中国海上油气, 2024, 36(2): 233–242.
[5] OKPOKPARORO S, SRIRAMULA S. Reliability analysis of floating wind turbine dynamic cables under realistic environmental loads [J]. Ocean Engineering, 2023, 27(8): 114594.
[6] 孔令澎, 王体涛, 梁旭, 等. 漂浮式风电平台动态电缆疲劳寿命分析[J]. 船舶工程, 2022, 44(2): 23–27.
[7] 孙红军, 郭诗然, 蒋雪蕾, 等. 基于DAS探测的动态缆紧固状态监测研究[J]. 光通信研究, 2021(3):1–11.
[8] 于治雨, 陶金汉, 谢伟, 等. 浮式风电用动态海缆制造过程关键技术研究[J]. 光纤与电缆及其应用技术, 2023(3): 29–31+40.
[9] BEIER D, JANOCHA M J, YE N, et al. Fatigue assessment of suspended inter-array power cables for floating offshore wind turbines [J]. Engineering Structures, 2024, 30(8): 118007.
[10] RENTSCHLER M U T, ADAM F, CHAINHO P. Design optimization of dynamic inter-array cable systems for floating offshore wind turbines [J]. Renewable and Sustainable Energy Reviews, 2019, 11(1): 622–635.
[11] KNAPP R H. Torque and stress balanced design of helically armored cables[J]. Journal of Engineering for Industry, 1981, 10(3): 61–66.
[12] KNAPP R H. Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion [J]. International Journal for Numerical Methods in Engineering, 1979, 14(2): 515–529.
[13] 俞国军, 王孟义, 丰如男, 等. 浅水缓波型和缓S型动态缆动力响应分析[J]. 船舶与海洋工程. 2021, 37(3): 28–34.
[14] 陈金龙. 海洋动态脐带缆的整体设计与分析[D]. 大连: 大连理工大学, 2011.
[15] 朱艳杰, 夏峰, 朱克强, 等. 三种典型动态脐带缆线型仿真研究[J]. 电线电缆, 2017,(1): 13–18.