为了深入理解船舶冷媒水管网系统在更多运行条件下的性能以及控制策略的特性,基于在FloMASTER中搭建的冷媒水管网数值模型,进行了末端变流量PID控制策略及泵支路压差旁通PID控制策略的模拟分析。对末端变流量控制策略进行模拟,结果表明采用末端变流量PID控制策略可以很好地控制末端的按需流量。多末端同时调节时,阀门控制会产生干涉现象,但各末端流量仍能很好控制。泵支路压差旁通控制策略模拟结果表明这种策略在维持系统流量和压差稳定性方面具有显著效果。研究结果为实际应用提供了理论依据和设计指导。
In order to gain a deeper understanding of the performance and control strategy characteristics of the refrigerant water pipe network system under various operating conditions, this dissertation conducted simulation analysis of the end variable flow PID control strategy and the pump branch pressure difference bypass PID control strategy based on the numerical model of the refrigerant water pipe network built in FloMASTER. The simulation of the end variable flow control strategy showed that the end variable flow PID control strategy can effectively control the on-demand flow at the end. When multiple ends are adjusted simultaneously, valve control may cause interference, but the flow at each end can still be well controlled. The simulation results of the pump branch pressure difference bypass control strategy showed that this strategy has significant effects in maintaining system flow and pressure difference stability. The research results provide theoretical basis and design guidance for practical applications.
2025,47(11): 107-112 收稿日期:2024-8-23
DOI:10.3404/j.issn.1672-7649.2025.11.018
分类号:U664.5
基金项目:国家自然科学基金资助项目(52378099)
作者简介:舒星宇(2000-),男,硕士研究生,研究方向为舱室大气环境
参考文献:
[1] 申晓晨. 船舶空调系统的数学建模与动态仿真[J]. 舰船科学技术, 2023, 45(8): 46-49.
SHEN X C. Mathematical modeling and dynamic simulation of marine air conditioning systems[J]. Ship Science and Technology, 2023, 45(8): 46-49
[2] 张伟华. 环枝状集输管网布局拓扑优化研究[J]. 油气田地面工程, 2023, 42(5): 43-47, 52
[3] 郑军林, 严天, 徐新华. 船舶环状冷媒水系统冬季工况运行模拟分析[J]. 舰船科学技术, 2021, 43(1): 133-137
ZHENG J L, YAN T, XU X H. Simulation study on the operation of loop refrigerant water of a ship in winter season[J]. Ship Science and Technology, 2021, 43(1): 133-137
[4] FAN B, JIN X Q, DU Z M. Optimal control strategies for multi-chiller system based on probability density distribution of cooling load ratio[J]. Energy and Buildings, 2011, 43: 2813-2821
[5] 闫秀英, 王乐唯. 多台冷水机组联合运行优化控制策略[J]. 计算机测量与控制, 2020, 28(7): 97-101
[6] SHENG X J, LIN D M. Energy saving factors affecting analysis on district heating system with distributed variable frequency speed pumps[J]. Applied Thermal Engineering, 2017, 121: 779-790
[7] ZHANG Y C, CHEN C X, XIA J J. Energy performance analysis of an integrated distributed variable-frequency pump and water storage system for district cooling systems[J]. Applied Sciences, 2017, 7(11): 1139
[8] HUO Y J, CAI L, ZHANG J Z. Research on pipeline characteristics and energy saving of distributed secondary pump system for district cooling[J]. Energy Procedia, 2019, 158: 6405-6412
[9] GONG E W, WANG N, YOU S J, et al. Optimal operation of novel hybrid district heating system driven by central and distributed variable speed pumps[J]. Energy conversion and management, 2019, 196: 211-226
[10] LIU X F, LIU J P, LU J D, et al. Research on operating characteristics of direct-return chilled water system controlled by variable temperature difference[J]. Energy, 2012, 40(1): 236-249
[11] 方志, 梁彩华, 白曦. 基于末端调节信号的空调冷冻水变流量运行策略[J]. 建筑科学, 2023, 39(6): 189-196.