船载拖曳式侧扫声呐拖体的入水深度、干端张力等数据多通过海上拖曳试验获得,试验的时间和成本较高,无法全面预测不同航速与放缆长度下拖体的相关数据。采用仿真方法对声呐拖体的运动响应进行分析,首先采用流体力学有限元仿真方法对拖体进行水动力仿真,得到水动力数据;并结合凝集参数法对拖体的运动响应进行编程计算,得到拖体在不同速度、不同放缆长度的入水深度、干端张力等数据;最后对该声呐样机进行海上拖曳试验,将仿真结果与试验结果进行对比。二者变化趋势一致,且相对误差较小,在10%以内,证明了仿真结果具备可靠性,可用于预测声呐的入水深度和干端张力等重要参数。
The data on the water depth and dry end tension of the ship mounted towed side scan sonar towing body are mostly obtained through sea towing experiments, which are time-consuming and costly, and cannot comprehensively predict the relevant data of the towing body under different speeds and cable lengths. Using simulation methods to analyze the motion response of the sonar towing body, firstly, the hydrodynamic simulation of the towing body is carried out using fluid dynamics finite element simulation method to obtain hydrodynamic data; And combined with the coagulation parameter method, the motion response of the trailer was programmed and calculated to obtain data such as the water depth and dry end tension of the trailer at different speeds and cable lengths; Finally, a sea towing test was conducted on the sonar prototype, and the simulation results were compared with the experimental results. The trend of the two changes is consistent, and the relative error is small, within 10%, which proves that the simulation results are reliable and can be used to predict important parameters such as the depth of entry and dry end tension of sonar.
2025,47(11): 113-117 收稿日期:2024-7-25
DOI:10.3404/j.issn.1672-7649.2025.11.019
分类号:U666.7
作者简介:刘永强(1988-),男,硕士,高级工程师,研究方向为海洋工程结构物设计
参考文献:
[1] 黄一清, 许冲, 张沛心, 等. 拖体姿态对入水深度的影响[J]. 船舶工程, 2022, 44(1): 625-630.
HUANG Y Q, XU C, ZHANG P X, et al. Simulation and experimental study on the influence of towed body attitude on water entry depth[J]. Ship Engineering, 2022, 44(1): 625-630.
[2] 李超, 艾艳辉, 佘湖清, 等. 水下拖曳系统定深和展开性能湖上试验研究[J]. 哈尔滨工程大学学报, 2022, 43(1): 62-68.
LI C, AI Y H, SHE H Q, et al. Experimental investigations on the depth setting and spreading performance of an underwater towed system on lakes[J]. Journal of Harbin engineering university, 2022, 43(1): 62-68 .
[3] 陶光勇. 高速大深度拖曳系统设计与试验[J]. 船舶与海洋工程, 2021, 37(6): 24-30.
TAO G Y. Design and test of high speed and large depth towing system[J]. Naval Architecture and Ocean Engineering, 2021, 37(6): 24-30.
[4] 缪峰, 许春艳, 任来平. 海洋磁力仪拖体入水深度试验与分析[J]. 海洋测绘, 2012, 32(4): 41-43.
MIU F, XU C Y, REN L P. Experiment and analysis of the depth of marine magnetometer towing into water[J]. Hydrographic Surveying and Charting, 2012, 32(4): 41-43 .
[5] 刘永强, 许冲, 王志博. 双船拖曳系统运动响应研究[J]. 船舶与海洋工程, 2022, 38(1): 20-24.
LIU Y Q, XU C, WANG Z B. A study on the motion responses of dual-ship towing system[J]. Naval Architecture and Ocean Engineering, 2022, 38(1): 20-24.
[6] 王志博. 海洋拖曳系统动力学与设计[M]. 北京: 国防工业出版社, 2019.
[7] 杜礼明, 张进. 基于降低航行阻力的声呐导流罩外形优化[J]. 舰船科学技术, 2013, 35(4): 75-79.
DU L M, ZHANG J. Numerical optimization of sonar dome profile based on reducing its sailing resistance[J]. Ship Science and Technology, 2013, 35(4): 75-79 .
[8] HSIEH K T, RAJAMANI R K. Mathematical model of the hydrocyclone based on physics of fluid flow[J]. AICHE Journal, 1991, 37(5): 735-746.