由于风电场对雷达设备存在干扰,船舶在风电场海域的航行存在安全隐患。因此本文研究了风电场对雷达的主要影响因素遮挡效应、多径效应、多普勒效应。建立了风机与风电场3D模型,仿真分析遮挡效应影响并结合实际风电场数据计算反射效应与多径效应对雷达探测效果的影响。结果表明,风电场后方区域电场强度在1 V/m入射电场附近波动,并且波动范围在–0.24~+0.16 V/m;经过风叶旋转频率调制后,雷达信号呈现调幅特征,幅度比值为–11.63 dB;直达波与目标散射信号比值为50.96 dB。得到以下结论:风电机产生的遮挡效应导致风电场后方区域存在电场波动,多普勒效应对雷达探测存在干扰,多径效应回波对雷达检测不会造成干扰。
Due to the interference of wind farms on radar equipment, the navigation of ships in the area of wind farms is a safety hazard. This paper investigates the main influence factors of wind farms on radar, such as shielding effect, multipath effect and doppler effect. A 3D model of wind turbine and wind farm is established to simulate and analyze the influence of shielding effect, and combine with the actual wind farm data to calculate the influence of reflection effect and multipath effect on the radar detection effect. The result shows that the electric field strength in the area behind the wind farm fluctuates around 1 V/m incident electric field, and the fluctuation range is from –0.24 V/m to +0.16 V/m; after the modulation of the rotational frequency of the wind blades, the radar signal shows the characteristics of amplitude modulation, and the amplitude ratio is –11.63 dB; and the ratio of the direct wave to the target scattered signal is 50.96 dB. The following conclusions are obtained: the shading effect produced by wind turbine leads to the existence of electric field fluctuation in the area behind the wind farm, the doppler effect interferes with the radar detection, and the multipath effect echo does not cause interference to the radar detection.
2025,47(11): 138-143 收稿日期:2024-8-15
DOI:10.3404/j.issn.1672-7649.2025.11.024
分类号:U666.14
基金项目:国家自然科学基金资助项目(52271367)
作者简介:董思佳(2000-),女,硕士,研究方向为船舶节能减排与船用电子设备电磁兼容
参考文献:
[1] 姚钢, 杨浩猛, 周荔丹,等. 大容量海上风电机组发展现状及关键技术[J]. 电力系统自动化, 2021, 45(21): 33-47.
YAO G, YANG H M, ZHOU L D, et al. Development status and key technologies of large-capacity offshore wind turbines[J]. Automation of Electric Power Systems, 2021, 45(21): 33-47.
[2] 吴彪, 沈国勤, 周宁. 风电场对雷达性能影响问题研究[J]. 中国无线电, 2013, 10(1): 60-62.
WU B, SHEN G Q, ZHOU N. Research on the influence of wind farms on radar performance[J]. China Radio, 2013, 10(1): 60-62.
[3] JUNG J H, CHOI I O, KIM K T, et al. Analysis of effect of korean offshore wind farms on accuracy of x-band tracking radar[J]. Progress In Electromagnetics Research M, 2014, 40(2): 195-204.
[4] DANOON L, AL-MASHHADANI W, BROWN A. Modelling the impact of offshore wind farms on safety radars onboard oil and gas platforms[J]. IET Microwaves, Antennas Propagation, 2017, 11(12): 1714-1718.
[5] GUTIÉRREZ-ANTUÑANO A M , TIANA-ALSINA J , ROCADENBOSCH F . Performance evaluation of a floating lidar buoy in nearshore conditions[J]. Wind Energy, 2017, 20(10): 1711-1726.
[6] 李耿, 陈璀. 海上风电场电磁辐射测试及分析[J]. 无线电工程, 2021, 51(7): 605-609.
LI G, CHEN C. Electromagnetic radiation test and analysis of offshore wind farm[J]. Radio Engineering, 2021, 51(7): 605-609.
[7] 何炜琨, 刘昂, 王晓亮, 等. 机载阵列雷达风轮机回波信号建模与分析[J]. 系统工程与电子技术, 2021, 43(3): 666-675.
HE W K, LIU A, WANG X L, et al. Modeling and analysis of wind turbine echoes for airborne array radar[J]. Systems Engineering and Electronics, 2021, 43(3): 666-675.
[8] 万晓玉, 沈明威, 吴迪, 等. 基于形态成分分离的风电场杂波抑制算法研究[J]. 现代雷达, 2021, 43(3): 74-79.
WAN X Y, SHEN M W, WU D, et al. A study on wind turbine clutter suppression based on morphological component separation[J]. Modern Radar, 2021, 43(3): 74-79.
[9] 吴仁彪, 刘娟, 王晓亮, 等. 风电场对气象雷达的影响评估系统设计与实现[J]. 计算机工程与设计, 2019, 40(3): 879-886.
WU R B, LIU J, WANG X L, et al. Design and implementation of impact assessment system of wind farms on weather radars[J]. Computer Engineering and Design, 2019, 40(3): 879-886.
[10] 张连迎, 李川川. 风机绕射损耗估算方法及对电子系统影响的分析[J]. 现代电子技术, 2014, 37(3): 35-37.
ZHANG L Y, LI C C, Analysis of the estimation method of diffraction loss over windmill and its influence to electronic system[J]. Modern Electronics Technique , 2014, 37(3): 35-37.
[11] 何炜琨, 石玉洛, 郭双双, 等. 风轮机雷达散射特性仿真及微多普勒特征分析[J]. 电波科学学报, 2017, 32(1): 103-111.
HE W K, SHI Y L, GUO S S, et al. Simulation of wind turbine radar scattering characteristics and its micro-doppler Analysis[J]. Chinese Journal of Radios Science, 2017, 32(1): 103-111.
[12] 石明卫, 莎柯雪, 刘原华. 无线通信原理与应用[M]. 北京: 人民邮电出版社, 2014.
[13] 高自新, 吴新华. 无线衰落信道的空时编码技术研究[J]. 无线电通信技术, 2011, 37(1): 30-33.
GAO Z X, WU X H. Research on space-time coding in wireless fading channe[J]. Radio Communications Technology, 2011, 37(1): 30-33.
[14] 李绵基. 海上风电场风力发电机运行维护策略研究[J]. 光源与照明, 2022, 175(12): 222-224.
LI M J. Research on operation and maintenance strategies of wind turbines in offshore wind farms[J]. Lamps and Lighting, 2022, 175(12): 222-224.
[15] CLAYTON R. PAUL. Introduction to electromagnetic compatibility[M]. Hoboken, John Wiley & Sons, In , 2005: 479-480.
[16] 张衡, 唐瑾, 林强, 等. 一种空管雷达风电场干扰抑制方法[J]. 雷达科学与技术, 2022, 20(2): 224-230.
ZHANG H, TANG J, LIN Q, et al. A method for wind farm jamming suppression in air traffic control radar[J]. Radar Science and Technology, 2022, 20(2): 224-230.
[17] 王洪永, 索莹, 邓维波. Altair FekoTM在计算风电场对雷达遮挡效应中的应用[C]//澳汰尔工程软件(上海)有限公司. 2021Altair技术大会论文集, 2021.
[18] GB/T 14914.4-2021. 海洋观测规范 第4部分: 岸基雷达观测[S].
[19] 唐波, 郝斌, 张建功, 等. 风电机叶片回波模拟及其多普勒特性分析[J]. 高电压技术, 2019, 45(11): 3674-3684.
TANG B, HAO B, ZHANG J G, et al. Echo simulation and doppler characterization of wind turbine blades[J]. High Voltage Engineering, 2019, 45(11): 3674-3684.
[20] WANG Q , WANG Y , TONG C , et al. Near-field IPO for analysis of EM scattering from multiple hybrid dielectric and conductor target and high resolution range profiles[J]. Remote Sensing, 2023, 15(7):16–19.
[21] 吴顺君, 梅晓春. 雷达信号处理和数据处理技术[M]. 北京: 电子工业出版社, 2008.