船舶航行环境存在风速与水流等复杂干扰,导致其失稳且偏离预设航迹,为此,设计基于人工智能的船智能航行控制系统。通过智能感知模块采集船舶航行速度、航向、环境等数据,由数据处理分析模块依据数据创建船舶运动模型及坐标系,通过智能控制模块的径向基神经网络设计智能控制器,对船舶航行中存在扰动因素下航向与航速的智能控制,船舶根据期望航行轨迹航行。实验结果显示,该系统可实现船舶稳定与扰动非稳态航行下的精准高效航向与航速控制,控制后的航行轨迹能够快速与预设轨迹相吻合,并保持持续稳定的航行轨迹跟踪,控制效果可靠。
The navigation environment of ships is subject to complex disturbances such as wind speed and water flow, leading to instability and deviation from the preset trajectory. Therefore, a ship intelligent navigation control system based on radial basis function artificial intelligence is designed. By using the intelligent perception module to collect data on ship navigation speed, heading, environment, etc., the data processing and analysis module creates a ship motion model and coordinate system based on the data. Through the radial basis function neural network of the intelligent control module, an intelligent controller is designed to intelligently control the heading and speed of the ship under disturbance factors during navigation. The ship navigates according to the expected navigation trajectory. The experimental results show that the system can achieve precise and efficient heading and speed control of ships under stable and disturbed non steady state navigation. The controlled navigation trajectory can quickly match the preset trajectory and maintain continuous and stable navigation trajectory tracking, with reliable control effect.
2025,47(11): 185-189 收稿日期:2025-1-12
DOI:10.3404/j.issn.1672-7649.2025.11.033
分类号:U666
基金项目:2025年广西交通运输科创宣讲工作服务(GXJD-25133SQ010345);2025 年度广西高校中青年教师科研基础能力提升项目(2025KY1532)
作者简介:郑金明(1981-),男,硕士,副教授,工程师,研究方向为软件工程、数字媒体应用及图形图像处理技术
参考文献:
[1] 张强, 李昊洋, 孟祥飞, 等. 基于Lyapunov理论考虑不确定扰动的船舶自适应跟踪控制[J]. 上海海事大学学报, 2023, 44(1): 8-16.
ZHANG Q, LI H Y, MENG X F, et al. Lyapunov theory-based adaptive tracking control for ships considering uncertain disturbances[J]. Journal of Shanghai Maritime University, 2023, 44(1): 8-16.
[2] 刘佳仑, 谢玲利, 李诗杰, 等. 面向船舶智能航行测试的变稳船控制系统设计[J]. 中国舰船研究, 2023, 18(3): 38-47,74.
LIU J L, XIE L L, LI S J, et al. Design of variable stability ship control system for intelligent navigation testing of ships [J]. China Shipbuilding Research, 2023, 18 (3): 38-47,74.
[3] CUI Z W, GUAN W, LUO W Z, et al. Intelligent navigation method for multiple marine autonomous surface ships based on improved PPO algorithm[J]. Ocean Engineering, 2023, 287(1): 1-17.
[4] 刘训文, 褚善东, 骆海洋, 等. 基于自适应神经网络的船舶航向保持预定义性能PI控制[J]. 上海海事大学学报, 2024, 45(1): 10-15.
LIU X W, CHU S D, LUO H Y, et al. PI control of ship course keeping with predefined performance based on adaptive neural network[J]. Journal of Shanghai Maritime University, 2024, 45(1): 10-15.
[5] 陶毅涵, 杜佳璐. 拥挤水域中的无人船智能避碰决策与航迹跟踪控制[J]. 控制与决策, 2025, 40(1): 214-222.
TAO Y H, DU J L. Intelligent collision avoidance decision-making and trajectory tracking control for USVs in congested waters[J]. Control and Decision, 2025, 40(1): 214-222.
[6] 隋丽蓉, 高曙, 何伟. 基于多智能体深度强化学习的船舶协同避碰策略[J]. 控制与决策, 2023, 38(5): 1395-1402.
SUI L R, GAO S, HE W. Ship cooperative collision avoidance strategy based on multi-agent deep reinforcement learning[J]. Control and Decision, 2023, 38(5): 1395-1402.
[7] 尤国桥, 刘曼茜, 柯宜龙. 基于奇异值分解的径向基函数神经网络的改进算法研究[J]. 计算数学, 2024, 46(4): 501-515.
YOU G Q, LIU M Q, KE Y L. Research on improved algorithm of radial basis function neural network based on singular value decomposition [J]. Computational Mathematics, 2024, 46 (4): 501-515.