船舶作为重要的运输工具,其安全性和稳定性受到了广泛关注。在恶劣海况下的横摇运动不仅影响货物的运输效率,更直接威胁到船员的生命安全和船舶的完整性。目前大多数预测船舶横摇运动的方法在实际应用中仍存在一定局限性,尤其在预测精度、计算效率、复杂多变的海洋环境的适应性等方面。本文提出基于深度学习的CEEMDAN-WOA-LSTM混合模型,通过先进的数据处理技术和优化算法,对不同船型的横摇运动数据进行训练建模和仿真预报,结果表明,本文提出的混合模型和优化方法,提高了船舶横摇运动预报的准确性和效率以及适应性,为海上交通安全管理提供强有力的技术支持。
As an important means of transportation, ships have received widespread attention for their safety and stability. The rolling motion in adverse sea conditions not only affects the transportation efficiency of goods, but also directly threatens the safety of crew members and the integrity of the ship. At present, most methods for predicting ship roll motion still have certain limitations in practical applications, especially in terms of prediction accuracy, computational efficiency, and adaptability to complex and changing marine environments. This paper proposes a deep learning based CEEMDAN-WOA-LSTM hybrid model, which uses advanced data processing techniques and optimization algorithms to train, model, and simulate the roll motion data of different ship types. The results show that the proposed hybrid model and optimization method improve the accuracy, efficiency, and adaptability of ship roll motion prediction, providing strong technical support for maritime traffic safety management.
2025,47(12): 6-13 收稿日期:2024-8-27
DOI:10.3404/j.issn.1672-7649.2025.12.002
分类号:U661
基金项目:国家重点研发计划资助项目(2022YFB4301402)
作者简介:宋新宇(1998-),男,硕士研究生,研究方向为船舶耐波性运动预报
参考文献:
[1] 盛振邦, 刘应中. 船舶原理(下)[M]. 上海: 上海交通大学出版社, 2004.
[2] 彭秀艳, 闫金山, 邱德庆. 船舶运动建模预报的周期图法研究[J]. 船舶工程, 2011, 33(5): 60-64.
PENG X Y, YAN J S, QIU D Q. Research on the period diagram method for ship motion modeling and prediction[J]. Ship Engineering, 2011, 33(5): 60-64.
[3] 赵希人, 彭秀艳, 吕淑萍, 等. 具有艏前波观测量的大型舰船姿态运动极短期预报[J]. 船舶力学, 2003(2): 39-44.
ZHAO X R, PENG X Y, LV S P, et al. Ultra-short-term prediction of attitude motion for large ships with fore-wave observation[J]. Ship Mechanics, 2003(2): 39-44.
[4] SIDAR M M, DOOLIN B F. On the feasibility of real time prediction of aircraft carrier motion at sea[J]. IEEE Transactions on Automatic Control, 1983, 28(3): 350-356.
[5] TRIANTAFYLLOU M S, BODSON M, ATHANS M. Real time prediction and estimation of ship motion using Kalman filtering tchniques[J]. IEEE Journal of Oceanic Engineering, 2003, 8(1): 9-20.
[6] PENG X, DONG H, ZHANG B. Echo state network ship motion modeling prediction based on Kalman filter[C]// 2017 IEEE International Conference on Mechatronics and Automation (ICMA). IEEE, 2017: 95–100.
[7] BROOME D R, PITTARAS A. The time prediction of ship motions at sea[C]// Offshore Technology Conference, 1990.
[8] KHAN A, BIL, C, MARION K E. Ship motion prediction for launch and recovery of air vehicles[C]// Oceans. IEEE. 2005: 2795–2801.
[9] 左思雨, 赵强, 张冰, 等. 基于VMD-SSA-GRU的船舶运动姿态预报[J]. 舰船科学技术, 2022, 44(23): 60-65+69.
ZUO S Y, ZHAO Q, ZHANG B, et al. Ship motion attitude prediction based on VMD-SSA-GRU[J]. Ship Science and Technology, 2022, 44(23): 60-65+69.
[10] 梁宏涛, 刘硕, 杜军威, 等. 深度学习应用于时序预报研究综述[J]. 计算机科学与探索, 2023, 17(6): 1285-1300.
LIANG H T, LIU S, DU J W, et al. A review of deep learning applications in time series prediction research[J]. Computer Science and Exploration, 2023, 17(6): 1285-1300
[11] 李敖, 冉华军, 李林蔚, 等. 基于CEEMDAN-TCN的短期风电功率预报研究[J/OL]. 现代电子技术, 1–7[2024–08–17].
[12] SEYEDALI M, ANDREW L. The whale optimization algorithm, advances in engineering software[J]. Advances in Engineering Software, 2016, 95: 51–67.
[13] 易文海, 高志亮. 基于LSTM神经网络的随机横浪中船舶横摇运动极短期预报[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(6): 1113-1117.
YI W H, GAO Z L. Short term prediction of ship roll motion in random waves based on LSTM neural network[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2021, 45(6): 1113-1117
[14] 彭秀艳, 张彪. 基于EMD-PSO-LSTM组合模型的船舶运动姿态预报[J]. 中国惯性技术学报, 2019, 27(4): 421-426.
PENG X Y, ZHANG B. Ship motion attitude prediction based on EMD-PSO-LSTM combined model[J]. Chinese Journal of Inertial Technology, 2019, 27(4): 421-426.
[15] CHEN H C, LEE S K. Chimera RANS simulation of propeller-ship interactions including crash-astern conditions[C]// In the Proceedings of the 13rd International Offshore and Polar Engineering Conference. Honolulu, Hawaii, USA, 2003.
[16] SHAWN A, PHILIPP M. Computational fluid dynamics analysis of different propeller models for a ship maneuvering in calm water[J]. Ocean Engineering, 2023, 276, 114226.