开放水域的环境往往复杂多变,包括静态障碍物和动态障碍物等,这些因素增加了船舶编队避障的难度,为此提出一种结合改进人工势场法和优化遗传算法的避障方法。在局部避障中,引入改进的斥力函数平衡目标点吸引力和障碍物斥力,提高了路径规划的有效性和实用性。在全局避障中,采用定长二进制编码、动态环境适应机制和自适应遗传算法操作,实现了复杂开放水域多船编队的全局避障。实验结果表明,该方法能够成功引导多船编队避开静态和动态障碍物,保持队形稳定性,验证了其在复杂开放水域中的可靠性和实用性。
The environment of open waters is often complex and varied, including static and dynamic obstacles, which increase the difficulty of obstacle avoidance for ship formations. Therefore, a method combining improved artificial potential field method and optimized genetic algorithm for obstacle avoidance is proposed. In local obstacle avoidance, the introduction of an improved repulsive function balances the attraction of the target point and the repulsion of obstacles, improving the effectiveness and practicality of path planning. In global obstacle avoidance, fixed length binary encoding, dynamic environment adaptation mechanism, and adaptive genetic algorithm operation are used to achieve global obstacle avoidance for complex open water multi ship formations. The experimental results show that this method can successfully guide multi ship formations to avoid static and dynamic obstacles, maintain formation stability, and verify its reliability and practicality in complex open waters.
2025,47(12): 19-23 收稿日期:2025-2-26
DOI:10.3404/j.issn.1672-7649.2025.12.004
分类号:TP242
基金项目:江苏省海经监评估中心开放项目(JSHYJJ202203);江科大本科双创省级重点项目(双创学院[2023]15号)
作者简介:任禹澎(2004-),男,本科在读,研究方向为船舶生产计划管理和作业仿真
参考文献:
[1] 张阳, 高曙, 何伟, 等. 基于多模型融合的内河船舶航行轨迹预测方法[J]. 中国机械工程, 2022, 33(10): 1142-1152.
ZHANG Y, GAO S, HE W, et al. Navigation traj ectory prediction method of inland ships lased on multi-model fusion[J]. China Mechanical Engineering, 2022, 33(10): 1142-1152.
[2] 郝金玉, 范雪, 杨少龙, 等. 基于动态目标点协同的无人艇编队路径规划[J]. 兵器装备工程学报, 2022, 43(9): 1-8.
HAO J Y , FAN X, YANG S L, et al. USV formation path planning based on coordinated dynamic target point strategy [J]. Journal of Ordnance Equipment Engineering , 2022, 43(9): 1-8.
[3] 魏振堃, 赵素丽, 李阳超, 等. 舰艇编队多补给舰海上补给路径规划[J]. 火力与指挥控制, 2021, 46(2): 41-45,52.
WEI Z K, ZHAO S L, LI Y C, et al. Marine supply path planning of warship formation with multi supply ship[J]. Fire Control & Command Control, 2021, 46(2): 41-45, 52.
[4] 张兰勇, 韩宇. 基于改进的RRT*算法的AUV集群路径规划[J]. 中国舰船研究, 2023, 18(1): 43-51.
ZHANG L Y, HAN Y. AUV cluster path planning based on improved RRT* algorithm[J]. Chinese Journal of Ship Research, 2023, 18(1): 43-51.
[5] 王立鹏, 张智, 马山, 等. 考虑船舶操纵性约束的改进遗传算法航线规划[J]. 哈尔滨工程大学学报, 2021, 42(7): 1056-1062.
WANG L P, ZHANG Z, MA S, et al. Improved genetic algorithm-based ship route planning considering ship maneuverability constraints[J]. Journal of Harbin Engineering University, 2021, 42(7): 1056-1062.
[6] 黄培灿, 吴焯标, 傅嘉锐, 等. 多无人艇协同围捕算法设计与仿真[J]. 工业控制计算机, 2023, 36(7): 110-111.
HUANG P C, WU Z B, FU J R. Design and simulation of cooperative hunting algorithm based on Multi-USV[J]. Industrial Control Computer, 2023, 36(7): 110-111.
[7] 冯增喜, 李丙辉, 张聪. 基于遗传算法的MFAC参数寻优[J]. 计算机仿真, 2021, 38(3): 170-174.
FENG Z X, LI B H, ZHANG C. Optimizing the parameters of MFAC based on the genetic algorithm[J]. Computer Simulation, 2021, 38(3): 170-174.
[8] 宋吉超, 张森, 张延松. 基于遗传算法的船舶零件理料路径规划[J]. 船舶工程, 2021, 43(6): 7-11,70.
SONG J C, ZHANG S, ZHANG Y S. Path planning of ship parts sorting based on genetic algorithm[J]. Ship Engineering, 2021, 43(6): 7-11,70.