在船舶航行过程中,螺旋桨工作于复杂的非定常流场中,船身伴流不均、外界风浪流因素以及叶片设计等会引发周期性和随机激振力,这些激振力对船尾轴承的润滑特性产生显著影响。本文分析螺旋桨激振力的产生机制,基于流体润滑理论的雷诺方程,建立考虑螺旋桨激振力影响的船尾轴承润滑模型;搭建模拟实验平台,涵盖实验台架、动力系统、激振力加载装置及辅助装置等,通过实验获取不同激振力幅值下油膜压力最大值和油膜最小厚度数据,并与理论计算结果进行对比。研究结果表明,油膜压力最大值和油膜最小厚度的理论值与实验值差异明显。本文为船舶推进系统的优化设计与运行维护提供了理论支撑与实践参考。
During the navigation of a ship, the propeller operates in a complex unsteady flow field. Uneven body flow, external wind, wave and current factors, as well as blade design, can cause periodic and random excitation forces, which have a significant impact on the lubrication characteristics of the stern bearings. The generation mechanism of the propeller excitation force was analyzed in depth. Then, based on the Reynolds equation of fluid lubrication theory, a lubrication model of the stern bearing considering the influence of the propeller excitation force was established. A simulation experiment platform was established, covering the experimental bench, power system, excitation force loading device and auxiliary device, etc. Through experiments, the data of the maximum oil film pressure and the minimum oil film thickness under different excitation force amplitudes were obtained and compared with the theoretical calculation results. The research results show that the theoretical values of the maximum oil film pressure and the minimum oil film thickness differ significantly from the experimental values. This research provides important theoretical support and practical reference for the optimal design and operation and maintenance of ship propulsion systems.
2025,47(12): 34-37 收稿日期:2024-7-9
DOI:10.3404/j.issn.1672-7649.2025.12.007
分类号:U667.65
基金项目:河南省教育厅高等学校重点科研项目(23A460028)
作者简介:杜彩凤(1988-),女,硕士,讲师,研究方向为计算机辅助设计及机械设计与制造
参考文献:
[1] 姜宜辰, 黄磊, 代金池, 等. 弹性对螺旋桨激振力和噪声特性影响分析[J]. 哈尔滨工程大学学报, 2025, 46(1): 1-9.
[2] 余翔, 赖元庆, 李国平, 等. 均匀来流下吊舱推进器伴流场及激振力特性研究[J]. 工程热物理学报, 2024, 45(1): 85-92.
[3] 史宝雍, 叶金铭, 原田宁. 螺旋桨受损变形对激振力影响的数值计算分析[J]. 舰船科学技术, 2021, 43(17): 48-53.
SHI B Y, YE J M, HARADA N. Numerical calculation and analysis of the influence of propeller damage and deformation on the excitation force[J]. Ship Science and Technology, 2021, 43(17): 48-53.
[4] 赖元庆, 高波, 张宁, 等. 吊柱干涉作用下吊舱推进器的激振力特性[J]. 船舶工程, 2023, 45(10): 91-96+152.
[5] 孙鸣远, 刘昕瑶, 张皓, 等. 基于NSGA Ⅱ的七叶侧斜螺旋桨多目标优化设计[J]. 兵器装备工程学报, 2022, 43(12): 51-58.
[6] 宋健. 基于CFD某起重船船艉激振力数值计算与分析[J]. 中国水运, 2023(19): 77-79.
[7] 田畅, 夏林生, 付敏飞, 等, 曹琳琳, 吴大转. 潜艇伴流场对螺旋桨激振力的影响[J]. 中国舰船研究, 2023, 18(3): 111-121.
[8] 张雪燕. 云计算环境下螺旋桨振力异常数值预报分析[J]. 舰船科学技术, 2022, 44(7): 43-46.
ZHANG X Y. Numerical prediction analysis of abnormal propeller vibration force in a cloud computing environment[J]. Ship Science and Technology, 2022, 44(7): 43-46.