大型船舶造型设计参数众多,难以通过设计人员简单的分析来确定最佳的造型设计方案,本文研究基于势流计算的大型船舶型线设计。以母型船为基础,用母型融合法整合不同母型船优势特征,由变换函数灵活设定大型船舶造型设计参数;设定大型船舶造型设计参数时,构建基于势流计算的船型优化目标设计模型,设计船型优化目标为兴波阻力最小化,并界定大型船舶造型设计的优化变量取值区间,在CFD中使用Shipflow软件,由势流计算方法,求兴波阻力最小的造型设计方案。研究结果显示,该方法模拟设计的大型船舶模型,相较于母船,不仅实现了兴波阻力的显著降低,其航行时的波高起伏也更为平缓,充分验证该设计方法在提升船舶水动力性能方面的有效性。
There are many parameters in the shape design of large ships, so it is difficult for designers to determine the best shape design scheme through simple analysis, and to study the shape design of large ships based on potential flow calculation. This method is based on the mother ship and integrates the advantageous features of different mother ships using the mother ship fusion method. The design parameters of large ship shapes are flexibly set by the transformation function; When setting parameters for the design of large ship shapes, a ship shape optimization objective design model based on potential flow calculation is constructed. The design optimization objective of the ship shape is to minimize the wave making resistance, and the range of optimization variables for the design of large ship shapes is defined. In CFD, the SHIPLOW software is used to calculate the shape design scheme with the minimum wave making resistance using potential flow calculation method. The research results show that the large ship model simulated by this method not only achieves a significant reduction in wave resistance compared to the mother ship, but also has smoother wave height fluctuations during navigation, fully verifying the effectiveness of this design method in improving the hydrodynamic performance of ships.
2025,47(12): 38-42 收稿日期:2024-9-10
DOI:10.3404/j.issn.1672-7649.2025.12.008
分类号:TP391
基金项目:河南省软科学研究计划项目(252400410500);安阳工学院校科研创新团队项目(CXTD202410)
作者简介:吴杰(1980-),男,硕士,副教授,研究方向为工业设计
参考文献:
[1] 谭钱, 蔡薇, 王乐诚, 等. 渐递进邮轮造型与功能布局逆向设计方法[J]. 船舶工程, 2024, 46(8): 8-17.
TAN Q, CAI W, WANG L C, et al. Progressive cruise shape and functional layout reverse design methods[J]. Ship Engineering, 2024, 46(8): 8-17.
[2] 李寅灏, 顾解忡, 马宁. KCS艏艉型线优化及其对推进效率的影响[J]. 船舶工程, 2023, 45(6): 37-44.
LI Y H, GU X C, MA N. Bow and stern optimization of KCS and effect on propulsive efficiency[J]. Ship Engineering, 2023, 45(6): 37-44.
[3] 郑安燃, 孙文愈, 苏甲, 等. 基于融合和区域特征分析的船型设计开发研究[J]. 船舶力学, 2024, 28(5): 637-650.
ZHENG A R, SUN W Y, SU J, et al. Hull lines design and development based on hull fusion and regional feature analysis[J]. Journal of Ship Mechanics, 2024, 28(5): 637-650.
[4] 孙风胜, 于欣, 张维英, 等. 基于VFM与智能优化方法的水面舰船球艏降阻研究[J]. 大连理工大学学报, 2023, 63(2): 182-192.
SUN F S, YU X, ZHANG W Y, et al. Research on resistance reduction of bulbous bow of surface ships based on VFM and intelligent optimization method[J]. Journal of Dalian University of Technology, 2023, 63(2): 182-192.
[5] 冯佰威, 谢恒, 张子诚. 基于NURBS的船型参数化设计方法及应用研究[J]. 武汉理工大学学报, 2024, 46(7): 116-122.
FENG B W, XIE H, ZHANG Z C, et al. Application research on hull form parameters design method based on NURBS[J]. Journal of Wuhan University of Technology, 2024, 46(7): 116-122.
[6] 欧阳旭宇, 常海超, 刘祖源, 等. 自适应采样方法在船型优化中的应用[J]. 上海交通大学学报, 2022, 56(7): 937-943.
OUYANG X Y, CHENG H C, LIU Z Y, et al. Application of adaptive sampling method in hull form optimization[J]. Journal of Shanghai Jiaotong University, 2022, 56(7): 937-943.
[7] 赵英燕, 曹群生, 曹振南, 等. 国产船舶水动力数值软件在工业云平台的实现[J]. 系统仿真学报, 2022, 34(8): 1855-1863.
ZHAO Y Y, CAO Q S, CAO Z N, et al. Realization of domestic ship hydrodynamic numerical software on industrial cloud platform[J]. Journal of System Simulation, 2022, 34(8): 1855-1863.