为了研究倾斜轴颈在不同轴承倾角设计下的动态润滑特性变化规律,以某16100 TEU大型集装箱船的传动轴系后艉轴承为研究对象,建立考虑轴颈和轴承双倾角的数值模型。通过数值仿真方法,研究了轴颈大角度倾斜对轴承润滑性能的影响,分析轴承不同倾角位置对油膜压力分布和轴心轨迹的改善效果。结果表明,当轴颈出现大角度倾斜时,轴承润滑状况显著恶化,最大偏心率达到0.97。相较于轴承单倾角设计,双倾角设计在降低偏心率、优化油膜压力分布和稳定轴心轨迹方面表现出明显的优势。研究可为大型船舶后艉轴承的设计提供理论参考。
To investigate the dynamic lubrication characteristics of inclined shafts under different bearing inclination designs, this study focuses on the aft stern bearing of the propulsion shaft system of a 16100TEU large container ship. A numerical model considering dual inclinations of the shaft and bearing was established. Through numerical simulations, the impact of large shaft inclinations on bearing lubrication performance was examined, and the improvements in oil film pressure distribution and shaft center trajectory due to different bearing inclination positions were analyzed. The results indicate that when the shaft has a large inclination, the bearing lubrication condition significantly deteriorates, with the maximum eccentricity reaching 0.97. Compared to single-inclination design of bearings, dual-inclination designs show marked advantages in reducing eccentricity, optimizing oil film pressure distribution, and stabilizing shaft center trajectories.This study provides theoretical reference for the design of aft stern bearings in large ships.
2025,47(12): 78-85 收稿日期:2024-8-20
DOI:10.3404/j.issn.1672-7649.2025.12.015
分类号:U664.21
基金项目:国家自然科学基金重点基金资助项目(51839005);高技术船舶科研专项(K24532-1-2)
作者简介:钟欣荣(2000-),男,硕士研究生,研究方向为船舶动力装置系统性能优化
参考文献:
[1] LEI J, ZHOU R, SHENG Y, et al. Numerical calculation of oil film for ship stern bearing based on matrix method[C]//MATEC Web of Conferences. EDP Sciences, 2019.
[2] 张少凯, 周建辉, 吴炜, 等. 船舶尾轴承倾斜计算分析研究[J]. 中国舰船研究, 2011, 6(3): 60-63.
ZHANG S K, ZHOU J H, WU Y, et al. Computational analysis on the inclination of ship stern bearing[J]. Chinese Journal of Ship Research, 2011, 6(3): 60-63.
[3] 袁少朋, 郭红, 石明辉. 基于FLUENT的径向滑动轴承紊流润滑特性研究[J]. 润滑与密封, 2022, 47(9): 56-62.
YUAN S P, GUO H, SHI M H. Research on turbulent lubrication characteristics of radial sliding bearings based on FLUENT[J]. Lubrication Engineering, 2022, 47(9): 56-62.
[4] 王家序, 倪小康, 韩彦峰, 等. 倾斜轴颈滑动轴承混合热弹流研究[J]. 中南大学学报(自然科学版), 2019, 50(10): 2425-2434.
WANG J X, NI X K, HAN Y F, et al. Mixed thermoelastohydrodynamic lubrication investigation of misaligned journal bearings[J]. Journal of Central South University(Science and Technology), 2019, 50(10): 2425-2434.
[5] 张胜伦, 裴世源, 徐华, 等. 考虑瞬态冲击和弹性变形的滑动轴承特性与动力学响应[J]. 西安交通大学学报, 2018, 52(1): 100-106+114.
ZHANG S L, PEI S Y, XU H, et al. Journal bearing properties and dynamic responses under transient impact load and elastic deformation[J]. Journal of Xi’an Jiaotong University, 2018, 52(1): 100-106+114.
[6] YANG H J, ZHANG Y H, LU L P. Numerical investigation of after stern tube bearing during ship turning maneuver[J]. Journal of Marine Science and Technology, 2020, 25: 707-717.
[7] 刘思佳, 袁强, 刘宇, 等. 动态载荷条件下船舶推进轴系尾轴承润滑性能分析[J]. 舰船科学技术, 2023, 45(16): 43-47.
LIU S J, YUAN Q, LIU Y, et al. Analysis of lubrication performance of marine propulsion shaft bearing under dynamic load[J]. Ship Science and Technology, 2023, 45(16): 43-47.
[8] 张直明, 张言羊, 谢友柏, 等. 滑动轴承的流体动力润滑理论[M]. 北京: 高等教育出版社, 1986.
[9] GAO G, YIN Z, JIANG D, et al. Numerical analysis of plain journal bearing under hydrodynamic lubrication by water[J]. Tribology international, 2014, 75: 31-38.
[10] LIN C G, JIAN F, SUN S L, et al. Analysis of nonlinear time-domain lubrication characteristics of the hydrodynamic journal bearing system[J]. Lubricants. 2023, 11(3): 145.
[11] 韦光成. 计及轴颈轴向运动的船舶推进轴系轴颈倾斜艉轴承润滑特性研究[D]. 镇江: 江苏科技大学, 2023.