本文建立一套主动顶空采样系统并测定汽轮机油挥发性有机化合物(VOCs)的释放特征参数,为舰船舱室汽轮机油挥发污染物控制提供参考。利用低速率采样泵、顶空瓶等搭建主动顶空采样系统,使用低速率采样泵对顶空气体进行采样并采用GC/MS检测方法定量分析,得到汽轮机油挥发组分和释放特征参数,将汽轮机油置于水浴装置中加热研究温度对挥发的影响。研究发现,室温(约20℃)下1.8 mL/min为该主动顶空采样系统的最佳采样速率。汽轮机油在工作温度(50℃)下的挥发关键参数${y_0}$约为5587.6 μg/m3,挥发物质中浓度最高的是甲苯,占比约13.9%。在13、24、35、50℃下汽轮机油挥发的TVOC浓度分别为2173.9、2730.1、4060.3、5587.6 μg/m3,在13℃~50℃区间内,温度上升1℃,TVOC浓度上升约95.4 μg/m3。
An active headspace sampling system was established to measure the release characteristic parameters of volatile organic compounds (VOCs) in turbine oil, providing reference for control of turbine oil volatile pollutants in vessel cabin environment. The active headspace sampling system was set up with a low-rate sampling pump and headspace bottle. The low-rate sampling pump was used to sample the headspace and GC/MS was used for quantitative analysis to obtain the volatile components and release characteristics of the turbine oil. The influence of temperature on volatilization was studied by heating the turbine oil in a water bath. The optimal sampling rate for the active headspace sampling system was 1.8 mL/min at room temperature (about 20℃). The key parameter of turbine oil volatilization at operating temperature, source emission concentration${y_0}$was about 5587.6 μg/m3, and the highest concentration of volatile substances was toluene, accounting for about 13.9%. At 13, 24, 35 and 50℃, the TVOC concentration of turbine oil volatilization was 2173.9, 2730.1, 4060.3 and 5587.6 μg/m3, respectively. Through linear fitting, the temperature rises by 1℃ in the range of 13℃ to 50℃, the TVOC concentration increased by about 95.4 μg/m3.
2025,47(12): 86-92 收稿日期:2024-8-25
DOI:10.3404/j.issn.1672-7649.2025.12.016
分类号:U664.86
基金项目:国家部委基金资助项目(52178068)
作者简介:田蕾(1982-),女,硕士,高级实验师,研究方向为军事环境毒理
参考文献:
[1] 王钰, 王璐阳, 李灿. 密闭舱室挥发性有机化合物被动式采集与非靶向测试[J]. 舰船科学技术, 2021, 43(5): 77-81.
WANG Y, WANG L Y, LI C. Passive sampling and non-target analysis of volatile organic compounds in closed cabins[J]. Ship Science and Technology, 2021, 43(5): 77-81.
[2] 张洪彬. 潜艇空气污染与污染检测技术[J]. 舰船科学技术, 2006, 38(2): 5–8.
ZHAN H B. Submarine atmosphere pollution and detection technology[J]. Ship Science and Technology, 2006, 38(2): 5–8.
[3] 李灿, 李晓旭, 余涛, 等. 舰船机舱油雾浓度测试研究[J]. 舰船科学技术, 2017, 39(5): 123-126.
LI C, LI X X, YU T. Research on oil mist concentration test of ship engine room[J]. Ship Science and Technology, 2017, 39(5): 123-126.
[4] 于龙, 丛黎明, 李卫鹏, 等. 某水面舰艇舱室内空气部分有害物现场调查分析[J]. 军事医学, 2016, 40(10): 856-857.
YU L, CONG L M, LI W P, et al. Field investigation and analysis of harmful substances in the air in the cabin of a surface ship[J]. Military Medical Sciences, 2016, 40(10): 856-857.
[5] 李健, 杨建东, 徐国鑫, 等. 航天远洋测控作业环境VOCs污染特征及健康风险评价[J]. 航天医学与医学工程, 2019, 32(6): 484-489.
LI J, YANG J D, XV G X, et al. Pollution characteristics and health risk assessment of VOCs in the working environment of oceangoing space tracking ship[J]. Space Medicine & Medical Engineering, 2019, 32(6): 484-489.
[6] 侯晨, 史喜成, 白书培, 等. 舰艇舱室挥发性有机化合物来源分析及污染等级分类[J]. 天津大学学报(自然科学与工程技术版), 2018, 51(1): 50-56.
HONG C, SHI X C, BAI P S, et al. Passive sampling and non-target analysis of volatile organic compounds in closed cabins[J]. Journal of Tianjin University (Science and Technology), 2018, 51(1): 50-56.
[7] 方晶晶, 何艳兰, 许林军, 等. 舰艇舱室封闭环境中挥发性化合物分析[J]. 舰船科学技术, 2013, 35(6): 90-95.
FANG J J, HE Y L, XV L J, et al. Analysis of volatile compounds in the closed ship cabins[J]. Ship Science and Technology, 2013, 35(6): 90-95.
[8] 余涛, 周爱民, 沈旭东. 多区域网络模型在船舶舱室污染物传播研究中的应用[J]. 舰船科学技术, 2014, 36(8): 137-141.
YU T, ZHOU A M, SHENG X D. Application of multi-zone network model on contaminant transport in ship cabins[J]. Ship Science and Technology, 2014, 36(8): 137-141.
[9] 中国人民解放军海军. 水面舰艇舱室空气组分容许浓度: GJB7497–2012 2012.
[10] 中国人民解放军海军. 核潜艇舱室空气组分容许浓度[S]. GJB11B–2012 2012.
[11] 英克鲁佩勒, 德维特, 伯格曼, 等. 传热和传质基本原理 [M]. 北京: 化学工业出版社, 2007.
[12] 余涛, 张卫东, 李灿, 等. 蒸汽动力舰船汽轮机油散发挥发性有机物的组成特征[J]. 舰船科学技术, 2016, 38(21): 91-94.
YU T, ZAHNG W D, LI C, et al. Research on the composition of volatile organic compounds released from lubricating oils in steam power ship[J]. Ship Science and Technology, 2016, 38(21): 91-94.
[13] 王海华, 王侠. 船舶汽轮机油挥发性有机物组成检测研究[J]. 舰船科学技术, 2018, 40(14): 106-108.
WANG H H, WANG X. Study on the composition of volatile organic compounds in Marine turbine oil[J]. Ship Science and Technology, 2018, 40(14): 106-108.
[14] 刘聪. 室内SVOC浓度影响和控制机理研究[D]. 北京:清华大学, 2013.
[15] WANG Z, YU T, YE J, et al. A novel low sampling rate and cost-efficient active sampler for medium/long-term monitoring of gaseous pollutants[J]. Journal of Hazard Mater, 2024, 461: 132583.
[16] 卓可凡, 赵延兴, 董学强, 等. R1234ze(Z)在243.152~373.150 K内的饱和蒸汽压实验测量及拟合[J]. 科学通报, 2017, 62(23): 2691-2697.
ZHANG K F, ZHAO YX, DONG X Q, et al. Saturation pressure measurement and correlation of cis-1, 3, 3, 3-Tetrafluoropropene at temperatures ranging from 243.152 to 373.150 K[J]. Chinese Science Bulletin, 2017, 62(23): 2691-2697.
[17] 王新轲, 张寅平, 赵荣义. 干板材VOC双面散发特性研究[J]. 科学通报, 2006, 18: 2205–2211.
WANG X K, ZHANG Y P, ZHAO Y R. Study on Double-sided VOC emission characteristics of dry sheet[J]. Chinese Science Bulletin, 2006, 18: 2205–2211.
[18] GUO H, MURRAY F. Characterization of total volatile organic compound emissions from paints[J]. Clean Products and Processes, 2000, 2(1): 28-36.