离心泵作为极地船舶主机辅助系统的关键组件,其工作状态对主机的稳定运行至关重要。为研究冰粒两相流对主机辅助系统中离心泵叶片损伤的影响,基于计算流体力学方法,采用欧拉-欧拉模型,其中冰粒体积分数范围为0~7%,冰粒直径范围为0~1.2 mm。通过分析比较叶片表面冰粒分布、汽蚀系数及剪切应力等特征参数发现,在两相流条件下,叶片表面压力变化主要受冰粒分布特性影响;两相流中的冰粒与壁面之间的剧烈碰撞消耗了离心泵内部流场动能,从而降低了叶片表面的汽蚀系数和剪切应力。
The centrifugal pump serves as a critical component of the auxiliary system in polar vessels, with its operational state being essential for the stability of the main engine. This study investigates the impact of two-phase flow involving ice particles on impeller damage within this system by employing computational fluid dynamics (CFD) through an Euler-Euler model, where ice particle volume fractions range from 0% to 7% and diameters span from 0 mm to 1.2 mm. Analyzing parameters such as ice particle distribution on blade surfaces, cavitation coefficients, and shear stresses indicates that pressure variations on the blades are predominantly influenced by the spatial distribution of ice particles; vigorous collisions between these particles and surrounding walls result in a depletion of kinetic energy within the pump's flow field, consequently diminishing both cavitation coefficients and shear stresses experienced by the blades.
2025,47(12): 93-97 收稿日期:2024-10-29
DOI:10.3404/j.issn.1672-7649.2025.12.017
分类号:U644.5+8
基金项目:国家自然科学基金资助项目(51479152)
作者简介:曹应佳(1986-),男,高级工程师,研究方向为柴油机润滑冷却
参考文献:
[1] 罗旭, 石建伟, 王兴林, 等. 低比转速离心泵叶轮径向力特性研究[J]. 水力发电, 2020, 46(12): 79-83.
[2] TARODIYA R, GANDHI B K. Hydraulic performance and erosive wear of centrifugal slurry pumps - A review[J]. Powder Technology, 2017, 305: 27-38.
[3] CAO Y, ZHAO J P. Progress of chinese research in arctic physical oceanography during 2007-2010[J]. Advances in Polar Science, 2011, (22): 281-292.
[4] YANG Y, WANG H, HU Q , et al. 4. Two-phase flow investigation of sewage pumps with different tip clearance via computational fluid dynamics and multi-factor ANOVA[J]. Engineering Applications of Computational Fluid Mechanics, 2024.
[5] DONG W, LI S C, HE F , et al. Effect of variable conditions on transient flow in a solid–liquid two-phase centrifugal pump[J]. Physics of Fluids, 2024.
[6] MENTZOS M D, KASSANOS I, ANAGNOSTOPOULOS I, et al. The effect of blade angle distribution on the flow field of a centrifugal impeller in liquid-gas flow[J]. Energies, 2024, 17(16): 3997-3997.
[7] 王欣永, 李永业, 张海赟, 等. 单吸式清水离心泵内部水流流动特性数值模拟[J]. 水力发电, 2020, 46(5): 93-98.
[8] 王彦军. 基于Ansys CFD的离心泵内部湍流数值模拟分析[J]. 机电工程技术, 2021, 50(2): 27-29+60.
[9] WANG J, LIU X, LUO Z, et al. Study of the effect of solid particle volume fraction on cavitation characteristics in a centrifugal pump[J]. Meccanica, 2022, 57: 62-67.
[10] 刘倍倍. 利用Ansys-fluent模拟双吸离心泵出口泥沙磨损[J]. 陕西水利, 2023(7): 9-11.
[11] LI Y, LIU D, CUI B, et al. Studying particle transport characteristics in centrifugal pumps under external vibration using CFD-DEM simulation[J]. Ocean Engineering, 2024, 301: 12-17.
[12] WANG Y, ZU Y, HE T, et al. Effect of the volume concentration of binary mixed particles on the flow and wear characteristics of centrifugal pumps[J]. Processes, 2024, 12(6): 4-8.
[13] 胡志高, 吴一鸣, 王彦芳, 等. 基于FLUENT数值模拟的离心泵内冰浆两相流流动特性分析[J]. 流体机械, 2021, 49(4): 48-54+90.
[14] 丁正强, 徐立, 陈森杨, 等. 冰粒对船用离心泵压力脉动特性的影响[J]. 流体机械, 2023, 51(4): 58-65.