在强载波干扰条件下,GPS、雷达等定位系统信号容易受到干扰,导致船舶定位精度下降,为此提出了强载波干扰条件下船舶组合定位信息融合方法。在强载波干扰条件下,通过周跳探测与修复算法,准确检测并修复GPS定位信息中的周跳,获取船舶GPS定位信息;利用空频联合斜投影算子滤波算法抑制干扰信息,获取船舶雷达定位信息;通过加权融合处理后的船舶GPS定位信息与船舶雷达定位信息,完成船舶组合定位信息融合。实验证明,该方法可以实现船舶组合定位信息有效融合,信息融合方差较小,证明该方法具备较高定位精度。
Under strong carrier interference conditions, GPS, Radar and other positioning system signals are prone to interference, leading to a decrease in ship positioning accuracy. Therefore, a method for combining ship positioning information fusion under strong carrier interference conditions is proposed. Under strong carrier interference conditions, using cycle slip detection and repair algorithms, accurately detect and repair cycle slips in GPS positioning information, and obtain ship GPS positioning information; Using the spatial frequency joint oblique projection operator filtering algorithm to suppress interference information and obtain ship radar positioning information; Through weighted fusion processing of ship GPS positioning information and ship radar positioning information, the fusion of ship combined positioning information is completed. Experimental results have shown that this method can effectively fuse ship combination positioning information, with a small variance in information fusion, demonstrating that this method has high positioning accuracy.
2025,47(12): 129-133 收稿日期:2025-2-27
DOI:10.3404/j.issn.1672-7649.2025.12.023
分类号:TP391
基金项目:天津市津南区科技计划课题(20220109)
作者简介:杜向然(1982-),男,硕士,副教授,研究方向为贝叶斯法则与定理
参考文献:
[1] 张宇, 于蕾, 单明广, 等. 基于长短路融合及数据平衡的SAR船舶检测算法[J]. 航天返回与遥感, 2024, 45(2): 134–143.
ZHANG Y, YU L, SHAN M G, et al. SAR ship detection algorithm based on long-short path lion and data balance[J]. Spacecraft Recovery & Remote Sensing, 45(2): 134–143.
[2] 邢汇源, 崔亚奇, 王子玲, 等. 复杂海况下的海上船舶目标检测算法[J]. 现代防御技术, 2024, 52(6): 88–96.
XING H Y, CUI Y Q, WANG Z L, et al. Target detection algorithm for ships at sea under complex sea conditions[J]. Modern Defense Technology, 52(6): 88–96.
[3] 徐华, 沙虹伟. 外辐射源雷达与多站时差定位雷达数据融合定位技术研究[J]. 电子器件, 2024, 47(5): 1210–1214.
XU H, SHA H W. Research on the data fusion and location technology of external illuminator radar and multi-Sites TDOA radar[J]. Chinese Journal of Electron Devices, 47(5): 1210–1214.
[4] 卢艳军, 张前, 张晓东, 等. 基于光流传感器的位置信息融合方法[J]. 探测与控制学报, 2022, 44(3): 51–56.
LU Y J, ZHANG Q, ZHANG X D, et al. Location information fusion method based on extended kalman filter[J]. Journal of Detection & Control, 44(3): 51–56.
[5] XU W , CAI K & WANG D D. A novel information fusion method using improved entropy measure in multi-source incomplete interval-valued datasets. International Journal of Approximate Reasoning, 2024, 164(1): 1–12.
[6] 简杰, 朱志宇. 基于加权信息增益的并行融合AUV协同定位方法[J]. 中国舰船研究, 2022, 17(4): 79–91.
JIAN J, ZHU Z Y. A Parallel fusion method for AUV cooperative localization based on weighted information gain[J]. Chinese Journal of Ship Research, 2022, 17(4): 79–91.
[7] 朱旭芳, 黎奥丰, 夏家伟. 基于信息融合的无人艇船舶检测与跟踪[J]. 海军工程大学学报, 2022, 34(5): 20–26.
ZHU X F, LI A F, XIA J W. Detection and tracking algorithm of ships based on information fusion for unmanned surface vessel[J]. Journal of Naval University of Engineering, 2022, 34(5): 20–26.
[8] 韩海豹, 王孝国. 基于深度混合卷积的多传感器信息快速融合[J]. 计算机仿真, 2022, 39(5): 288–291, 298.
HAN H B, WANG X G. Fast multi-sensor information fusion based on deep hybrid convolution [J]. Computer Simulation, 2022, 39(5): 288–291, 298.