针对舰艇强导航干扰背景下,导航能力偏弱的单舰难以保证自身导航精度的问题,本文提出基于和积算法的舰艇编队主从式惯性基协同导航方法。利用编队各舰搭载的不同精度惯性导航基准,开展协同导航技术研究。构建了2艘舰艇组成的一主一从式惯性基协同导航数学模型,并将惯性导航信息参量与因子图融合,设计了基于因子图的和积协同导航算法;通过分析因子图中节点消息传递过程,获取了各节点之间的导航消息传递概率密度函数;以时间更新和测量更新为基础,建立2次消息传递过程,最终获得更新校正的从舰导航信息。试验结果表明,相较于传统的基于扩展卡尔曼滤波的惯性基协同导航算法,基于因子图的和积算法位置解算精度提高16.69%,北向速度精度提高34.94%,东向速度精度提高48.90%,可有效提高卫导拒止环境下的从舰惯性基导航精度。
In order to solve the problem that single ship with weak navigation capability cannot guarantee their own navigation accuracy under strong navigation interference, a cooperative navigation technology based on sum-product algorithm is studied by utilizing the different precision inertial navigation reference systems installed on each ship in the ship formation. A mathematical model of inertial-based cooperative navigation for two ships in a master-slave configuration was established. The information parameters of inertial navigation were fused with factor graph, and a sum-product cooperative navigation algorithm based on factor graph was designed. By analyzing the message passing process of nodes in the factor graph, the probability density function of navigation message passing between nodes was obtained. Based on the time update and measurement update, two message passing processes were established, and finally, the updated and corrected navigation information of the follower ship was obtained. The experimental results show that, compared with the traditional inertial-based cooperative navigation algorithm based on Extended Kalman filter, the positioning solution accuracy of sum-product algorithm based on the factor graph is improved by 16.69%, the northward velocity accuracy is improved by 34.94%, and the eastward velocity accuracy is improved by 48.90%, which can effectively improve the inertial-based navigation accuracy in the GNSS denied environment of slave ship.
2025,47(12): 134-140 收稿日期:2025-1-2
DOI:10.3404/j.issn.1672-7649.2025.12.024
分类号:U666
基金项目:黑龙江省自然科学基金项目(YQ2021E011)
作者简介:王苏(1978-),男,博士,讲师,研究方向为导航、制导与控制
参考文献:
[1] 黄文涛, 钟昭, 翟文华, 等. 基于分布式网络的水面舰艇编队一体化导航方法[J]. 中国舰船研究, 2024, 19(2): 233-244.
HUANG W T, ZHONG Z, ZHAI W H, et al. Distributed network-based integrated navigation methodfor surface ship formation[J]. Chinese Journal of Ship Research, 2024, 19(2): 233-244.
[2] 杨卫国, 孙贵东, 冯诚, 等. 中继通信舰艇编队协同通信技术研究[J]. 舰船科学技术, 2023, 45(4): 143-146.
YANG W G, SUN G D, FENG C, et al. Research on cooperative communication technology of warship formation based on relay communication[J]. Ship Science and Technology, 2023, 45(4): 143-146.
[3] 曹杰, 高王升, 程跃兵, 等. 舰艇编队协同防空一体化防御作战体系研究[J]. 舰船电子对抗, 2023, 46(6): 1-8,43.
CAO J, GAO W S, CHENG Y B, et al. Research into integrative defense operation system of ship formation’s coordination Air-defense[J]. Shipboard Electronic Countermeasure, 2023, 46(6): 1-8,43.
[4] 李伟, 李天伟, 王书晓, 等. 舰艇编队队形自动导航控制问题研究[J]. 舰船电子工程, 2021, 41(3): 24-41.
LI W, LI T W, WANG S X, et al. Research on automatic navigation control of warship formation[J]. Ship Electronic Engineering, 2021, 41(3): 24-41.
[5] 周红进, 钟云海, 李伟. 大型舰船编队相对导航方法比较[J]. 交通运输工程学报, 2016, 16(1): 149-158.
ZHOU H J, ZHONG Y H, LI T W. Comparison of relative navigation methods for large vessel formation[J]. Journal of Traffic and Transportation Engineering, 2016, 16(1): 149-158.
[6] YANG Q F, YANG X R, YANG Y J, et al. Distributed cooperative localization based on bearing-only sensors[J]. IEEE Sensors Journal, 2021, 21(20): 23645-23657.
[7] 徐博, 白金磊, 郝燕玲, 等. 多AUV协同导航问题的研究现状与进展[J]. 自动化学报, 2015, 43(3): 445-461.
XU B, BAI J L, HAO Y L, et al. The research status and progress of cooperative navigation for multiple AUVs[J]. Acta Automatica Sinica, 2015, 43(3): 445-461.
[8] 栾厚斌, 庞志超, 傅金琳. 无人集群中基于UKF的无线电测距协同定位方法[J]. 舰船科学技术, 2024, 46(16): 186-189.
LUAN H B, PANG Z C, FU J L. Radio ranging collaborative positioning method with UKF in unmanned cluster[J]. Ship Science and Technology, 2024, 46(16): 186-189.
[9] 潘献飞, 宁治文, 王茂松, 等. 基于因子图的导航定位技术应用分析与思考[J]. 控制理论与应用, 2023, 40(12): 2130-2141.
PAN X F, NING Z W, WANG M S. Analysis and reflection on the navigation and positioning application based on factor graph[J]. Control Theory & Applications, 2023, 40(12): 2130-2141.
[10] 张玉鹏, 王子璇, 刘剑威, 等. 因子图框架下无人艇主从式协同导航算法[J]. 导航定位学报, 2023, 11(2): 131-138.
ZHANG Y P, WANG Z X, LIU J W, et al. Leader-follower cooperative navigation algorithm for unmanned surface vessels based on factor graph optimization[J]. Journal of Navigation and Positioning, 2023, 11(2): 131-138.
[11] 李倩, 蒋正华, 孙炎, 等. 基于因子图的 INS/UWB 室内行人紧组合定位技术[J]. 仪器仪表学报, 2022, 43(5): 32-45.
[12] BEN Y Y, SUN Y, LI Q, et al. Multi-AUV cooperative navigation algorithm based on factor graph with stretching nodes’ strategy[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 1008715.
[13] 于飞, 范世伟, 李倩, 等. 主从式USV协同定位系统性能分析[J]. 哈尔滨工业大学学报, 2017, 49(9): 129-135.
YU F, FAN S W, LI Q, et al. Performance analysis of leader-follower USVs’ cooperative localization system[J]. Journal of Harbin Institute of Technology, 2017, 49(9): 129-135.
[14] LOELIGER H A. An introduction to factor graphs[J]. IEEE Signal Processing Magazine, 2004, 21(1): 28-41.
[15] MATTIA B, DOMENICO G, GIOVANNI S. Cooperative localization and multitarget tracking in agent networks with the sum-product algorithm[J]. IEEE Open Journal of Signal Processing, 2022(3): 169-195.
[16] WEI L, DONG L. Parametric variational sum-product algorithm for cooperative localization in wireless sensor networks[J]. IEEE Access, 2021(9): 89834-89845.