特种船需经常工作于恶劣环境中,在这类环境下船舶需要配套新风预热系统来维持全船人员和财产安全。但已有新风预热系统时而出现供热不足、无法供热的情况。本文选用共晶复合技术制备的导热强化型己二酸-癸二酸作为套管式相变蓄热器的储热材料,通过CFD软件分析相变材料在相变蓄热器内的固-液变化特性,并解释相变蓄热器在蓄放热时出现的热积累现象。此外,分析介质在不同入口温度条件下相变蓄热器的充放热完成时间,研究表明充热温度在140℃及以上、放热温度在95℃及以下时,该材料表现出优异的蓄放热特性,结果表明船舶新风预热系统加装套管式相变蓄热器的可行性。
Special ships need to work frequently in harsh environments, and in such environments, ships need to be equipped with a fresh air preheating system to maintain the safety of all personnel and property on board. However, the existing fresh air preheating system sometimes experiences insufficient heating and inability to provide heat. This study selected adipic acid sebacic acid, which was prepared by eutectic composite technology and subjected to thermal conductivity enhancement, as the thermal storage material for a sleeve type phase change heat storage device. The solid-liquid change characteristics of the phase change material in the phase change heat storage device were analyzed using CFD software, and the heat accumulation phenomenon during heat storage and release in the phase change heat storage device was explained. In addition, the completion time of phase change heat storage at different temperatures at the inlet was analyzed. The study showed that the material exhibited excellent heat storage and release characteristics when the charging temperature was 140 ℃ or above and the releasing temperature was 95 ℃ or below. This also demonstrates the feasibility of installing a sleeve type heat storage in the ship's fresh air preheating system.
2025,47(12): 159-163 收稿日期:2024-7-30
DOI:10.3404/j.issn.1672-7649.2025.12.028
分类号:TP021.3
作者简介:吴延嘉(1985-),男,硕士,研究方向为船舶热交换
参考文献:
[1] LISSNER M, TISSOT J, LEDUCQ D, et al. Performance study of latent heat accumulators: numerical and experimental study[J]. Applied Thermal Engineering, 2016, 102: 604-614.
[2] ZHANG G, HU P, LIU M. Thermal performances of non-equidistant helical-coil phase change accumulator for latent heat storage[J]. Science China Technological Sciences, 2017, 60(5): 668-677.
[3] 殷浪华. 大型船舶的转轮热回收系统分析[J]. 航海技术, 2024(1): 72-75.
[4] 李华安. 面向船舶余热梯级利用的TEG-ORC联合循环工质对比与性能研究[D]. 大连: 大连海事大学, 2023.
[5] 党玉荣. 基于船用柴油机废气驱动的不同余热回收系统综合评价与优化[D]. 南宁: 广西大学, 2024.
[6] 汤宇君. 耦合废气再循环的船舶柴油机余热回收联合循环设计及性能研究[D]. 济南: 山东大学, 2024.
[7] 刘凤青. 泡沫金属对相变蓄热强化性能的数值模拟及实验研究[D]. 石家庄: 河北科技大学, 2010.